Полупроводниковые фотоэлементы — страница 2

  • Просмотров 985
  • Скачиваний 23
  • Размер файла 17
    Кб

сопротивления — объема полупроводника, показанных на эквивалентной схеме фотоэлемента (рис. 14-10), на которой процесс световой генерации пар зарядов представлен эквивалентным генератором тока. Для этой схемы в соответствии с законом Кирхгофа можно записать:При малых значениях светового потока , следовательно, и световая характеристика почти линейна. С увеличением светового потока сопротивление перехода уменьшается и

зависимость I == I (Ф) все больше отклоняется от линейной.Семейство вольт-амперных характеристик фотоэлемента показано на рис. 14-9, б. Эти кривые представляют собой участок вольт-амперных характеристик облученного р-п перехода (см. рис. 14-7). При заданном световом потоке, например , характеристика отсекает на оси ординат отрезок, равный фототоку а на оси абсцисс — отрезок, равный величине фото - э. д. с. .На семействе вольт-амперных

характеристик может быть построена нагрузочная характеристика — прямая, идущая из начала координат, — угла наклона которой к оси абсцисс пропорционален сопротивлению . Точка пересечения нагрузочной характеристики с вольт-амперной характеристикой определяет рабочую точку А, координаты которой соответствуют величинам тока I во внешней цепи и напряжения на зажимах резистора Площадь прямоугольника, ограниченного осями

ординат и перпендикулярами, опущенными к ним из рабочей точки, пропорциональна мощности, выделяемой во внешней цепи.Относительные спектральные характеристики основных типов промышленных фотоэлементов показаны на рис. 14-11, где нанесены также кривые энергии солнечного излучения, относительного числа фотонов в потоке солнечного света и видности глаза.Частотная характеристика дает представление об инерционных свойствах

фотоэлемента при облучении его световым потоком, модулированным по интенсивности по синусоидальному закон с частотой /. Как видно из рис. 14-12, с увеличением частот чувствительность фотоэлемента падает что определяется инерционными свойствами фотоэлемента, в основном постоянной времени перезаряда барьерной емкости р-п перехода. На частотно характеристике отмечено значение граничной частоты , при которой чувствительность

уменьшается в раз по сравнению ее значением при f = 0.Полупроводниковые фотоэлементы могут использоваться в качестве источников электрической энергии, а также в качестве фотоприемников.В последнем случае наиболее важна их спектральная характеристика, а также такие параметры, как пороговый поток обнаружительная способность D, смысл которых рассматривался в § 14-4.Для фотоэлементов, используемых как источники электроэнергии,