Планирование эксперимента — страница 6

  • Просмотров 1343
  • Скачиваний 13
  • Размер файла 101
    Кб

экспериментальная оптимизация объекта исследования; планирование при изучении динамических процессов и т.д. Инициатором применения планирования эксперимента является Рональд А. Фишер, другой автор известных первых работ – Френк Йетс. Далее идеи планирования эксперимента формировались в трудах Дж. Бокса, Дж. Кифера. В нашей стране – в трудах Г.К. Круга, Е.В. Маркова и др. В настоящее время методы планирования

эксперимента заложены в специализированных пакетах, широко представленных на рынке программных продуктов, например: StatGrapfics, Statistica, SPSS, SYSTAT и др. 2.2 Представление результатов экспериментов При использовании методов планирования эксперимента необходимо найти ответы на 4 вопроса: Какие сочетания факторов и сколько таких сочетаний необходимо взять для определения функции отклика? Как найти коэффициенты В0, В1, …, Bm? Как оценить

точность представления функции отклика? Как использовать полученное представление для поиска оптимальных значений Y? Геометрическое представление функции отклика в факторном пространстве Х1, Х2, …, Хn называется поверхностью отклика (рис. 1). Рис. 1. Поверхность отклика Если исследуется влияние на Y лишь одного фактора Х1, то нахождение функции отклика – достаточно простая задача. Задавшись несколькими значениями этого

фактора, в результате опытов получаем соответствующие значения Y и график Y =F(X) (рис. 2). Рис. 2. Построение функции отклика одной переменной по опытным данным По его виду можно подобрать математическое выражение функции отклика. Если мы не уверены, что опыты хорошо воспроизводятся, то обычно опыты повторяют несколько раз и получают зависимость с учетом разброса опытных данных. Если факторов два, то необходимо провести опыты

при разных соотношениях этих факторов. Полученную функцию отклика в 3х-мерном пространстве (рис. 1) можно анализировать, проводя ряд сечений с фиксированными значениями одного из факторов (рис. 3). Вычлененные графики сечений можно аппроксимировать совокупностью математических выражений. Рис. 3. Сечения поверхности отклика при фиксированных откликах (а) и переменных (б, в) При трех и более факторах задача становится

практически неразрешимой. Если и будут найдены решения, то использовать совокупность выражений достаточно трудно, а часто и не реально. 2.3 Применение математического планирования эксперимента в научных исследованиях В современной математической теории оптимального планирования эксперимента существует 2 основных раздела: планирование эксперимента для изучения механизмов сложных процессов и свойств многокомпонентных