План Общая информация о полупроводниковых лазерах 3 Применения полупроводниковых лазеров 4 — страница 9

  • Просмотров 796
  • Скачиваний 6
  • Размер файла 291
    Кб

высоких порядков до уровней, превышающих воз­можности лазера. Наличие боковых поперечных мод оказывает влияние на пространственное распределение интенсивности лазерно­го излучения и на ширину его спектра. В ближнем поле излучения лазера при уширении полоски наб­людается тенденция к образованию шнуров (рис. 7). В дальнем поле при возбуждении только низшей поперечной пересекающей мо­ды в направлении, перпендикулярном

плоскости перехода, наблюда­ется единственный максимум. Угловая расходимость излучения зави­сит от толщины активного слоя и скачка коэффициента преломления в гетероструктуре. На рис. 7. показана зависимость угла расходи­мости 0х от толодины активного слоя для разных 10 значений относи­тельной разности коэффициентов преломления Л. При существенном уменьшении толгщшы активного слоя поперечные моды проникают в слои

покрытия активной области, что приводит к увеличению лазер­ного пятна (см. рис. 7) на выходном торце лазерного диода, По­этому с уменьшением толщины активного слоя будет уменьшаться угол расходимости. При Д = 8,7 % и d = 50 нм угол 0i равен 30°. При угле 0 L = 30° толщина активного слоя с уменьшением относительной разности коэффициентов преломления будет возрастать. Если в гетеролазере со скрытой гетероструктурой 0~30°, то оказывается

воз­можным получить дальнее поле в виде круга. Применяемые в настоящее время полосковые гетеролазеры с управляемым коэффициентом преломления могут работать как в не­прерывном, так и в импульсном режимах. Рис. 7. Распределение интенсивности излучения GaAlAs-гетеролазера в ближней и дальней зонах при разной ширине полоски Если лазерный диод на основе GaAlAs излучает в непрерывном ре­жиме мощность свыше 6...9 мВт на квадратный

микрометр излучаю­щей поверхности, то плотность энергии внутри активного элемента такова, что на частично отражающих гранях диода начинаются хими­ческие реакции. Зеркальные грани постепенно тускнеют в результате образования аморфного оксида. По истечении определенного времени работа лазерного диода ухудшается и он выходит из строя. При плот­ности 20...25 мВт на квадратный микрометр поглощение излучения на гранях скола

приводит к возникновению процесса термического испарения. Поверхность при этом нагревается до 1500 К, начинается 11 плавление полупроводникового материала и лазерный диод вьгходит из строя. Пределы на максимальную выходную мощность лазерных диодов с катастрофической деградацией зеркал могут быть смягчены одним из трех способов: 1) увеличением размера лазерного пятна с целью увеличения разме­ров поверхности, подвергающейся