Пьезоэлектрики и их свойства — страница 6

  • Просмотров 4322
  • Скачиваний 422
  • Размер файла 205
    Кб

соотношений (4) и (5) Положим, что кварцевая пластинка, вырезанная, как указано выше, растягивает­ся вдоль оси X, причем обкладки, касающиеся граней, разомкнуты. Так как заряд обкладок до деформации был равен нулю, а кварц является диэлектриком, то и после деформации обкладки будут незаряженными. Согласно определению элек­трического смещения это значит, что D=0. Тогда из соотношения (4) следует, что при деформации внутри пластинки

появится электрическое поле c напряженностью E=-(b/e0e)u (6) Подставляя это выражение в формулу (5), находим для механического на­пряжения в пластинке s=Cu-b(-(b/e0e)u)=C(1+(b2/e0eC))u (7) Напряжение, как и в отсутствие пьезоэлектрического эффекта, пропорционально деформации. Однако упругие свойства пластинки теперь характеризуются эффек­тивным модулем упругости С' == С (1 + b2/e0eС). (8) который больше С. Увеличение упругой жесткости вызвано появлением

добавоч­ного напряжения при обратном пьезоэффекте, препятствующего деформации. Влияние пьезоэлектрических свойств кристалла на его механические свойства характеризуется величиной К2=b2/e0eC (9) Квадратный корень из этой величины (К) называется константой электромехани­ческой связи Пользуясь приведенными выше значениями e, С и b, находим, что для кварца К2~0.01 Для всех других известных пьезоэлектрических кристаллов К2 оказывает

также малым по сравнению с единицей и не превышает 0,1. Оценим теперь величину пьезоэлектрического поля. Положим, что к граням кварцевой пластинки, перпендикулярным к оси X, приложено механическое на­пряжение 1 1055 Н/м2. Тогда, согласно (7), деформация будет равна u=1,3 10-6. Подставляя это значение в формулу (6), получаем |E|==5900 В/м=59 В/см. При толщине пластинки, скажем, d==0,5 см напряжение между обкладками будет равно U=Еd~30 В. Мы видим, что

пьезоэлектрические поля и напряжения могут быть весьма значительными. Применяя вместо кварца более сильные пьезоэлектрики и используя должным образом выбранные типы деформации, можно полу­чать пьезоэлектрические напряжения, измеряемые многими тысячами вольт. Пьезоэлектрический эффект (прямой и обратный) широко при­меняется для устройства различных электромеханических преоб­разователей. Для этого иногда используют

составные пьезоэлементы, предназначенные для осуществления деформаций разного типа. На рис.6 показан двойной пьезоэлемент (составленный из двух пластинок), работающий на сжатие. Пластинки вырезаны из крис­талла таким образом, что они одновременно либо сжимаются, либо растягиваются. Если, наоборот, сжимать или растягивать такой пьезоэлемент внешними силами, то между его обкладками появ­ляется напряжение. Соединение пластинок