Перспективы энергетики с точки зрения термодинамики — страница 8

  • Просмотров 403
  • Скачиваний 11
  • Размер файла 58
    Кб

результате внутренних хаотических движений). В реальности все системы формируются под воздействием окружающей среды. Для различения реальных систем, которые, отделяясь от окружающей Вселенной, приходят в состояние с низкой энтропией, и больцмановских постоянно изолированных от окружающей среды систем. Г. Рейхенбах назвал первые ветвящимися структурами – в их иерархии упорядоченность каждой зависит от предыдущей.

Ветвящаяся структура ведет себя асимметрично во времени по причине скрытого воздействия извне. При этом причина асимметрии – не в самой системе, а в воздействии. В реальном мире больцмановских систем нет. Асимметричные во времени процессы существуют и в областях за пределами термодинамики. Примером таких процессов могут служить волны ( в том числе радиоволны). Так радиоволны распространяются от передатчика в окружающее

пространство, но не наоборот. Аналогично обстоит дело с распространением волн от брошенного в пруд камня. Волны, бегущие от источника ( предположим, брошенного в пруд камня) в разные стороны, называют запаздывающими. В принципе возможны и опережающие волны, которые могут возникнуть тогда, когда возмущения сначала проходят через удаленную точку, а затем сходятся в месте распространения источника волны. Изолированный пруд есть

симметричная во времени система, как и больцмановский сосуд с газом. Брошенный в него камень создает ветвящуюся структуру. Радиоволна же обратно не вернется, ибо распространяется в безграничном пространстве. Здесь мы имеем дело с неограниченной диссипацией (рассеянием) волн и частиц, являющей собой еще один тип необратимой временной асимметрии. Значит, образование ветвящихся структур и необратимая асимметрия бесконечного

волнового движения делают необходимым учет крупномасштабных свойств Вселенной. Таким образом, дискуссия по поводу второго начала термодинамики привела к выводу, что законы микромира ситуацию с демоном Максвелла делают неосуществимой, но вместе с тем она способствовала уяснению того, что второе начало термодинамики является законом статистическим. 1.3 Третий закон термодинамики. Третье начало термодинамики (Теорема Нериста):

энтропия физической системы при стремлении температуры к абсолютному нулю не зависит от параметров системы и остается неизменной. Тепловой закон Нернста, согласно которому энтропия S любой системы стремится к конечному для неё пределу, не зависящему от давления, плотности или фазы, при стремлении температуры (Т) к абсолютному нулю. Третье начало термодинамики позволяет находить абсолютное значение энтропии, что нельзя