Перенос ионов в трехслойных ионообменных мембранных системах при интенсивных токовых режимах — страница 13

  • Просмотров 384
  • Скачиваний 13
  • Размер файла 136
    Кб

(рис. 5). Сравнение результатов расчета по предложенной модели и по модели с постоянной толщиной диффузионного слоя, рассмотренной в главе 4, позволяет сделать следующие выводы. В случае уменьшения толщины диффузионного слоя электроконвекция приводит к снижению (по сравнению с моделью, рассмотренной в главе 4) величины пространственного заряда, и толщина ОПЗ в мембране изменяется по закону . Максимальная напряженность

электрического поля на межфазной границе растет приблизительно пропорционально току . Для констант а и b получены следующие оценки: а – константа порядка , – константа порядка . Распределение концентраций в отдающем противоионы диффузионном слое носит такой же характер, как и в случае задачи по учету нарушения электронейтральности, т.е. зона делится на три части: квазиэлектронейтральную зону, электромиграционную зону и

область двойного электрического слоя. Однако учет переноса продуктов диссоциации воды приводит к тому, что ОПЗ имеет меньшие размеры. Заряд в диффузионном слое компенсируется зарядом противоположного знака в мембране, однако их абсолютные величины имеют меньшее значение, чем в моделях с постоянной толщиной диффузионного слоя. В то же время концентрация противоионов на границе диффузионный слой (I)/мембрана уменьшается,

проходя квазиравновесную стадию, и приблизительно со 100iпр наступает режим Шоттки. Это означает, что в электродиализных аппаратах режим Шоттки не достигается. Хотя этот вывод сделан в рамках данной модели, он согласуется с результатами экспериментов, выполненных с помощью метода лазерной интерферометрии (В.И. Васильева и В.А. Шапошник, ВГУ). В результате проведенных расчетов для различных значений константы относительной

диэлектрической проницаемости мембраны было получено, что значение данной константы оказывает влияние только на распределение напряженности электрического поля и концентраций в области нарушения электронейтральности. Кроме того, величина определяет размер области мембраны, в которой нарушается электронейтральность. Полученные оценки показывают, что толщина области нарушения электронейтральности в мембране растет как ,

где а – константа порядка см. Малая величина ОПЗ в мембране приводит к тому, что скачок потенциала в данной области пренебрежимо мал. Таким образом, показано, что влиянием области нарушения электронейтральности в мембране на расчет внутренних характеристик мембранной системы можно пренебречь. Результаты расчета теоретической толщины диффузионного слоя по модели были сопоставлены с экспериментальными данными, полученными