Перенос ионов в трехслойных ионообменных мембранных системах при интенсивных токовых режимах — страница 10

  • Просмотров 374
  • Скачиваний 13
  • Размер файла 136
    Кб

Таким образом, для достижения адекватности расчетных вольт-амперных кривых экспериментальным данным необходим дополнительный учет в математической модели диссоциации воды и сопряженной конвекции, которая приводит к частичному разрушению диффузионного слоя. В пятой главе рассмотрен электродиффузионный перенос четырех сортов ионов (Na+, Cl-, H+, OH-) в трехслойной мембранной системе при плотностях тока выше предельного. В

предложенной математической модели одновременно учитывается диссоциация молекул воды, нарушение электронейтральности в диффузионном слое (I) и в мембране, а также изменение толщины диффузионного слоя (I) в зависимости от плотности электрического тока в системе i. В основе созданной математической модели лежит тот же подход, который использовался в главе 4. Существенным отличием данной модели от модели, описанной в главе 4, и от

предшествующих моделей, известных в литературе, является то, что учитывается скорость диссоциации воды в мембране на ионогенных группах в тонком реакционном слое rec на границе диффузионный слой (I)/мембрана с помощью уравнения, полученного Н.В. Шельдешовым: (19) где – суммарная эффективная константа скорости псевдомономолекулярной реакции диссоциации воды в отсутствие электрического поля; – энтропийный, слабо изменяющийся с

температурой фактор. В связи с очень малой протяженностью ОПЗ χm  1 – 6 нм, нельзя говорить о значениях концентраций в этой зоне. Поэтому условие сращивания решения по концентрации на границе (аналогичное (6а)) не имеет физического смысла. Таким образом, решение задачи находилось только с учетом непрерывности напряженности электрического поля и электрического потенциала. Была решена обратная задача, в которой по известной

экспериментальной вольт-амперной характеристике (рис. 3) и заданным экспериментальным числам переноса (рис. 4) находились внутренние характеристики системы: толщина диффузионного слоя, распределение концентраций, зависимости напряженности электрического поля и плотности заряда от пространственной координаты при различных плотностях тока. Для расчета внутренних характеристик мембранной системы использовался следующий

алгоритм: 1. При заданном токе выше предельного из экспериментальных данных (рис. 3, 4) находятся падение потенциала в системе и число переноса . Зная эффективное число переноса , находим потоки ионов водорода и гидроксила по формуле J3,4=±(1-T1э)·I. 2. Из формулы (19) находится напряженность электрического поля на границе диффузионный слой (I)/мембрана. Найденное таким образом значение граничной напряженности электрического поля никак