Основные понятия концепции современного естествознания — страница 10

  • Просмотров 1888
  • Скачиваний 14
  • Размер файла 51
    Кб

измеримо, и делать измеримым то, что таковым не является», - утверждал выдающийся итальянский физик и астроном, один из основоположников естествознания Галилео Галилей (1564 - 1642). В своем произведении «Пробирных дел мастер» (1623) он аргументировано противопоставлял произвольные «философские» рассуждения единственно истинной натуральной философии, доступной лишь знающим математику: «Философия написана в величественной книге (я

имею в виду Вселенную), которая постоянно открыта нашему взору, но понять ее может лишь тот, кто сначала научится постигать ее язык и толковать знаки, которыми она написана. Написана она на языке математики, и знаки ее - треугольники, круги и другие геометрические фигуры, без которых человек не смог бы понять в ней ни единого слова; без них он был бы обречен блуждать в потемках по лабиринту». Основу естественнонаучных теорий

составляет математическое описание со стройной логической структурой. Рассмотрим характерный пример логического доказательства, позволяющего сделать правильный вывод, даже не обращаясь к эксперименту как необходимому элементу естественнонаучной истины. Доказательство касается того, что все тела падают с одинаковой скоростью. Оно изложено Галилеем в книге «Беседы и математические доказательства, касающиеся новых

отраслей науки» (1638). Опровергая утверждение Аристотеля (что в то время было актом огромного мужества) о том, что более тяжелые тела падают с большей скоростью, чем легкие, Галилей приводит следующее рассуждение. Допустим, Аристотель прав, и более тяжелое тело падает быстрее. Скрепим два тел - легкое и тяжелое. Тяжелое тело, стремясь падать быстрей, будет ускорять легкое, а легкое, стремясь двигаться медленнее тяжелого, будет его

тормозить. Поэтому скрепленное тело будет двигаться с промежуточной скоростью. Но оно тяжелее, чем каждая из его частей, и должно двигаться не с промежуточной скоростью, а со скоростью большей, чем скорость более тяжелой его части. Возникло противоречие, а, значит, исходное предположение неверно. Приведенный пример иллюстрирует, насколько сильна логика рассуждений, присущая, как правило, математическому доказательству. Но то,

что мы называем объективной реальностью, в конечном счете, есть то, что понятно нескольким мыслящим существам и могло бы быть понятно всем. Этой общею стороной, как мы увидим, может быть только гармония, выражающаяся математическими законами. Понятие физической реальности (микромир, макромир, мегамир). Типы физических взаимодействий Важнейшее свойство материи - ее структурная и системная организация, которая выражает