Некоторые Теоремы Штурма

  • Просмотров 2365
  • Скачиваний 224
  • Размер файла 151
    Кб

Быков В.В. bikov@rambler.ru Содержание Введение…………………………………………………………………………………………3 §1. Предварительные сведения……………………………………5 §2. Основные факты………………………………………………………………8 §3. Теоремы Штурма……………………………………………………………18 Использованная литература…………………………………………27 Введение Тема дипломной работы “Теорема Штурма”, связана с именем французского математика Жака Шарля Франсуа

Штурма. Штурм Жак Шарль Франсуа (Sturm J. Ch. F. – правильное произношение: Стюрм), родился 29 сентября 1803 года в Женеве. Был членом Парижской академии наук с 1836, а также иностранным членом – корреспондентом Петербургской академии наук с того же года. С 1840 года был профессором Политехнической школы в Париже. Штурм (1824/25) и Раабе (1827) ввели главные формулы сферической тригонометрии при помощи пространственных координат. Теорему Фурье (

Теорема о числе действительных корней между двумя данными пределами ), математика Жозефа Фурье (Joseph Fourier, 1768-1830), затмила более общая теорема, опубликованная Штурмом в Bull. mathem., 1829. Доказательство сам Штурм представил только в одной премированной работе 1835г. Коши Огюстен (Cauchy Augustin, 1789-1857) распространил теорему Штурма на комплексные корни (1831). Дополнение к ней дал также Сильвестр Джемс Джозеф (Sylvester Y.Y., 1814-1897) в 1839 году и позже.

Основные работы Жана Шарля Штурма относятся к решению краевых задач уравнений математической физики и связанной с этим задачей о разыскивании собственных значений и собственных функций для обыкновенных дифференциальных уравнений. (Задача Штурма-Лиувилля, о нахождении отличных от нуля решений дифференциальных уравнений : -(p(t)u¢)¢+q(t)u=lu, удовлетворяющих граничным условиям вида: А1u(a)+B1u¢(a)=0, A2u(b)+B2u¢(b)=0, (так называемых

собственных функций), а также о нахождении значений параметра l (собственных значений), при которых существуют такие решения. При некоторых условиях на коэффициенты p(t), q(t) задача Штурма-Лиувилля сводилась к рассмотрению аналогичной задачи для уравнения вида: -u¢¢+q(x)u=lu). Эта задача была впервые исследована Штурмом и Жозефом Лиувиллем (Joseph Liouville, 1809-1882) в 1837г. и закончена в 1841 г. Также Жак Штурм дал общий метод для определения