Настройка и решение обратной петрофизической задачи

  • Просмотров 155
  • Скачиваний 15
  • Размер файла 115
    Кб

Настройка и решение обратной петрофизической задачи на основе использования сочетания параметрических и непараметрических взаимосвязей Еникеев Б.Н. ЗАО ПАНГЕЯ Аннотация Предлагается использовать совместно параметрические и непараметрические петрофизические взаимосвязи при применении оптимизационного способа комплексной обработки и поддержи интерпретации данных каротажа. Программа опробована на методических

тестах и в конкретных геолого-геофизических условиях. Введение Начиная с работы Л.А.Халфина [1] и последующих публикаций Ф.М.Гольцмана[2], а также работ по раскрытию механизмов Л.С.Полака (1970) и cтатистической регуляризации В.Ф.Турчина (1974) в геофизику, а впоследствии и в каротаж (Б.Н.Еникеев 1974 [3]), проникли и распространились методы решения (системы GLOBAL (1979), ULTRA (1982), OPTCOM (1987), SOLVER (1987), PST(1992), ELAN (1993)) и настройки (Б.Н.Еникеев 1985 [4]) систем

петрофизических взаимосвязей. Близкие по идеологии постановки активно распространяются в последнее время и на западе [5]. К сожалению, все реже обращается внимание на то, что надежность решения получаемого использованием этого метода, как и cравнительно новых методов обработки данных (таких как нейронные сети, деревья решений, размытые множества) зависит не только от качества реализации вычислительного алгоритма, но в первую

очередь от адекватности и полноты используемой априорной информации. В практика интерпретации мы нередко сталкиваемся со случаями, когда эта информация или трудно доступна или просто плохо используется специалистами, поскольку не осознается ими или не описывается в рамках известных им представлений. Ниже предлагается способ комплексирования решений, полученных одновременно параметрическими и непараметрическими

методами. Описание метода. Моделирование и практический опыт интерпретации показывают, что методы статистической обработки, основанные на применении параметрических моделей более устойчивы к выбросам, но нередко менее устойчивы при решении в случае сильно зашумленных данных и при наличии не учитываемых внутренних корреляций чем формальные методы обработки данных (такие как регрессионные, непараметрические регрессии,