Модели системы кровообращения — страница 4

  • Просмотров 826
  • Скачиваний 16
  • Размер файла 191
    Кб

системой к описанию q-й системой (р-q-переход) значения новых переменных xq1,...,xqn выражаются через значения старых переменных xp1,...,xpn согласно уравнений скользящих движений: (3) где i=1,2,. .,n s1,. .,s - параметры скольжения. Заметим, что рассматриваемая динамическая система неавтономна, поскольку в условия перехода (2) явно входит переменная t. Содержательное описание моделей будет дано в гл.1. Там же - приведены результаты цифрового

моделирования, которые показали хорошее согласие с физиологическими данными. Существование периодического движения динамической системы доказывается либо экспериментально численным моделированием на ЭВМ, либо аналитически, в зависимости от вида функций Xji, Spq, ipq. В случае, если эти функции нелинейны, аналитическое решение вопроса о существовании периодических движений затруднительно. Анализ устойчивости стационарных

движений динамической системы позволяет установить факт реальности модели, поскольку реальная система кровообращения имеет стационарные устойчивые движения и из экспериментов известны характер и диапазоны их устойчивости. Кроме того, исследование устойчивости необходимо при анализе систем управления в аппаратах искусственного или вспомогательного кровообращения, при исследовании режимов внутриаортальной

контрпульсации и т.д. Устойчивость изолированного стационарного движения динамической системы понимается в смысле Ляпунова, ее исследование аналитическими методами в общем случае уравнений (1) - (3) затруднительно. В процессе идентификации системы координат измерению доступен вектор y* (t) =  (A*, х* (t)), (4) зависящий от неизвестных параметров. Задача идентификации параметров системы кровообращения по измерениям (4), снимаемым с

реального организма, ставится как задача определения параметров А модели (1) - (3) (а иногда дополнительно еще и параметров К и S), дающих наименьшее расстояние между y* (t) и соответствующими переменными y (t) = (A, x (t)). (5) При этом считается, что структура модели и объекта совпадают. Идентификация параметров проводилась различными методами: методом адаптивной идентификации, предложенным А.А. Красовским, методом прямого поиска,

градиентными методами, методом наименьших квадратов по приспособленному базису и другими. Требование идентичности, как правило, является глобальным и не исчерпывается идентичностью в одном заданном режиме (решение системы с фиксированными начальными условиями и параметрами). Проведенными машинными экспериментами было показано, что в системе (1) - (3) существуют режимы с неоднозначной идентификацией никоторых параметров.