Методы и приемы решения задач

  • Просмотров 3294
  • Скачиваний 204
  • Размер файла 77
    Кб

1. Дополнительное построение Продли медиану Характеристика метода. Довольно часто, когда в условии задачи фигурирует медиана треугольника, бывает полезным продлить ее за точку, лежащую на стороне треугольника, на отрезок, равный самой медиане. Полученная новая точка соединяется с вершиной (вершинами) исходного треугольника, в результате чего образуются равные треугольники. Равенство соответствующих элементов этих

треугольников помогает найти неизвестную величину или доказать предложенное утверждение. Задача. Докажите, что треугольник является равнобедренным, если совпадают проведенные из одной и той же вершины медиана и биссектриса. Решение. Рассмотрим треугольник ABC (рис. 1). Пусть отрезок BM – его медиана и биссектриса. Продлим BM на отрезок MD = BM. Образовались равные треугольники AMB и MCD (1-й признак равенства треугольников). Из равенства

этих треугольников имеем: (1) AB = CD и (2) Ð 1 = Ð 3. Используя равенство (2) и то, что Ð 1 = Ð 2 (по условию), получим, что треугольник BCD равнобедренный, а, следовательно, BC = CD. Используя полученный вывод и равенство (1) доказываем, что AB = BC, откуда следует истинность утверждения задачи. 2. Принцип непрерывности Характеристика метода. Пусть величина k (угол, длина, площадь) зависит от положения точки X на отрезке (ломаной или другой линии).

Если при одном положении X на отрезке k < 0, а при другом положении X на отрезке k > 0, то найдется такое положение X на этом отрезке, при котором k = 0. Задача. В равностороннем треугольнике ABC проведена медиана AA1. Есть ли такая точка X на AA1, из которой отрезок BC виден под прямым углом. Решение. Будем искать такое положение точки X, при котором Ð BXC = 90°. Начнем мысленно перемещать точку X по отрезку AA1 от A к A1. Обозначим величину угла BXC за j.

Когда точка X находится достаточно близко от точки A (рис. 2), тогда  мало отличается от 60°, а поэтому j< 90°. Когда точка X находится достаточно близко от (рис. 3), тогда j. мало отличается от 180°, а поэтому j> 90°. Значит при каком-то положении точки X на AA1 j. = 90°. 3. Метод доказательства «от противного» Характеристика метода. Имеем для доказательства утверждения вида A ÞB (A – условие, B – заключение). Суть доказательства данным