Методика измерения перемещений при помощи лазерных интерферометров — страница 3

  • Просмотров 5116
  • Скачиваний 494
  • Размер файла 188
    Кб

450 с плоскостью чертежа, меняют сос- тояние поляризации дважды прошедших пучков на ортогональное. По- ляризационная призма-куб 3 обеспечивает суперпозицию пучков, возвращенных отражателями 4 и 5, в направлении I1. После поляри- заторов 6, ось пропускания которых составляет угол 450 с плос- костью чертежа, в результате интерференции пучков с разными час- тотами образуются опорный I0 и измерительный I1 сигналы биения. Поскольку

номенклатура двухчастотных лазеров и значения раз- ности частот, которые они обеспечивают, ограничены, в качестве источника излучения часто используют одночастотный лазер, сдвигая частоты ортогональных составляющих его излучения акустооптически- ми модуляторами, которые устанавливают на входе, выходе или в од- ном из плечей интерферометра . В этом случае опорный сигнал I0 может быть получен непосредственно из модулирующих

сигналов, подаваемых на акустооптические модуляторы. Частота частотной модуляции, аналогично частоте фазовой модуляции, ограничивает время измерения . Однако при использовании акустооптических модуляторов она может быть установлена достаточно большой, чтобы этим ограничением можно было пренебречь. Тогда время однократного измерения фазы определяется временем задержки фазоизмерительного устройства и составляет для

современных ЛИС около 10 мкс . Так как ЛИС на основе частотной модуляции обеспечивают время измерения на порядок меньше, чем ЛИС на основе фазовой модуляции, допустимые скорости изменения ГРХ в них на порядок выше. Эти ЛИС считаются в большей степени подходящими для высокоточных измерений в реальном масштабе времени . При равной погрешности они имеют несколько больший диапазон измерения ГРХ. На основе методов прямого измерения

фазы разрабатывают ЛИС для измерения медленно меняющихся во времени и незначительных по величине расстояний с высокой точностью. Основная область применения таких ЛИС - контроль профиля и шероховатости поверхностей, в том числе оптических. Другая обширная сфера применения - интерференционные датчики физических величин, изменение которых можно преобразовать в изменение еометрической или оптической разности хода

интерферирующих лучей (давление и влажность атмосферы, температура, напряженность электрического и магнитного полей и др.). Частотную модуляцию интерференционного сигнала обеспечивают путем суперпозиции двух волн разной оптической частоты. В этом случае закон изменения интенсивности имеет вид где I1 и I2 - интенсивности, n1 и n2 - оптические частоты, f1 и f2 - фазы интерферирующих волн. Все переменные составляющие сигнала (4), кроме