Методические аспекты построения и анализа электродинамических уравнений Максвелла
УДК 537.8 МЕТОДИЧЕСКИЕ АСПЕКТЫ ПОСТРОЕНИЯ И АНАЛИЗА ЭЛЕКТРОДИНАМИЧЕСКИХ УРАВНЕНИЙ МАКСВЕЛЛА В.В. Сидоренков МГТУ им. Н.Э. Баумана На основе первичных фундаментальных соотношений электромагнетизма - закона Кулона взаимодействия неподвижных электрических точечных зарядов и закона сохранения электрического заряда цепочкой последовательных физико-математических рассуждений построена система дифференциальных уравнений Максвелла классической электродинамики. В курсе общей физики при изложении природы электричества [1] концепция электромагнитного поля является центральной, поскольку посредством такого поля реализуется один из видов фундаментального взаимодействия разнесенных в пространстве материальных тел. Физические свойства указанного поля математически представляются системой функционально связанных между собой уравнений в частных производных первого порядка, первоначальная версия которых была получена во второй половине XIX века Дж.К. Максвеллом [2] обобщением эмпирических фактов. В структуре этих уравнений, описывающих поведение электромагнитного поля в неподвижной среде, заложена основная аксиома классической электродинамики - неразрывное единство переменных во времени электрического и магнитного полей. В современной форме такая система дифференциальных уравнений имеет следующий вид: (a) , (b) , (c) , (d) . (1) Здесь векторные поля: электрической и магнитной напряженности, соответственно, электрической и магнитной индукции, а также плотности электрического тока ; и - абсолютные электрическая и магнитная
Похожие работы
- Практические занятия
- Рефераты
- Рефераты