Метод Zero Knowledge Proofs — страница 3

  • Просмотров 1563
  • Скачиваний 163
  • Размер файла 19
    Кб

если охраняется не очень важный объект то проще и быстрее проверять (PASSWORD) чем проводить проверку методом ZKP. Мы попробовали пройти систему кодировки ZKP. Для примера мы разобрали разные фрагменты графов что бы найти закономерность в построении гамильтонова цикла .Мы можем найти алгоритм построения гамильтонова цикла на данных фрагментах, что бы в дальнейшем строить этот цикл на более сложных графах. Пример1. A A E D C B F S N P G A В

данном графе легко можно B построить гамильтонов цикл F G E так как в данном графе есть два S P контура , которые находятся N друг в друге и соединены точками. C D Таким образом построение данного графа является самим гамильтоновым циклом и практически все графы строятся на основе самого гамильтонова цикла. С добавлением других ребер. Гамильтонов цикл легко искать если граф имеет вид замкнутых контуров соединенных более чем через

две точки друг с другом Пример 2. На данном графе намного сложнее построить гамильтонов цикл так как не все точки соединены с друг другом А Гамильтонов цикл: Б Л Д Б А Л К В С Е Д Д Е В данном случае мы нашли С его за 7 минут 34 секунды В К и если бы точки Б и В не лежали бы рядом то, это заняло бы у нас намного больше времени. Граф не обязательно должен быть таким , главное что граф может растягиваться как угодно ,и точки могут менять свои

координаты, главное что бы A соединялось с Б Д Л и тд. Пример 3. Мы можем разбивать сложные графы на более простые, гамильтонов цикл которых нам известен .Покажем это на примере ранее рассмотренных графов. А A1 B H B1 H3 G R1 T1 E F E1 Y1 C D 1. C1 F1 2. D1 Мы можем пройти цикл 1. и можем пройти цикл 2.А если представить что у нас есть цикл из 1 и 2 когда соединены H и B1, C и D1, то мы можем его пройти его как первый если уверены что можем пройти от B1 до C1 по всем

точкам , а так как это легко ( B1 R1 A1 T1 H3 Y1 D1 F1 E1 C1) и следовательно мы можем составить для него гамильтонов цикл и таким же образом мы можем составить гамильтонов цикл для многих сложных графов, правда с затратой времени , главное найти начальную (конечную) точку и несколько графов , по которым можно пройти так же легко как и по графу в примере . CHECKING PROGRAM Checking program – разновидность верификации , но эта на много удобнее и дешевле . СHEKING PROGRAM

заключается в том , что команды , которые посылает программа проходят через специально сделанную внутреннюю программу , которая настроена на новую версию, и она просто изменяет те команды, которые не подходят для данной версии. При изготовлении ракеты надо делать для нее специальную программу, но если раньше такая программа уже была сделана для похожей ракеты, а теперь появились маленькие изменения, то CHECKING PROGRAM будет пропуская