Межпредметные связи в высшей школе: математическое обеспечение курса аналитической химии — страница 4

  • Просмотров 143
  • Скачиваний 14
  • Размер файла 21
    Кб

и специальными дисциплинами (а не с одной АХ), а также учет фундаментальной и мировоззренческой значимости соответствующих разделов [9]. Такой комплексный анализ МПС, проведенный в ОмГУ в 1998 г. и включающий настоящее исследование в качестве одного из разделов, позволил выработать проект новой типовой программы курса ВМ для химиков [10]. Следует отметить, что целый ряд разделов курса АХ (в таблицу они не включены), судя по содержанию

учебников, вовсе не требует знания высшей математики. Например, только на "школьную" математику опираются разделы "Гравиметрический анализ", "Основные объекты анализа", "Методы рентгеновской спектроскопии" и др., а также большинство подразделов из указанных в таблице разделов. Наши подсчеты показывают, что методы высшей математики могут использоваться при изучении материала, составляющего в курсе АХ около

третьей части его содержания, хотя в научных исследованиях они применяются постоянно и практически всеми аналитиками. Такое "отставание" учебного курса от уровня математизации соответствующей науки представляется нежелательным, но терпимым. Однако в некоторых случаях такое отставание доходит до недопустимой степени. В частности, анализ 14 изданных в 1970-1990-е годы отечественных задачников по АХ показывает, что типовые

решения всех задач содержат лишь операции элементарной математики (арифметические действия с учетом правил округления, логарифмирование, потенциирование, действия со степенями, решение квадратных уравнений). Производные и интегралы не используются, даже если бы это существенно упростило или уточнило решение. Чтобы уйти от математических сложностей, во многих задачниках (и даже в некоторых учебниках) рекомендуются грубые

упрощения; например, пренебрежение ступенчатым характером комплексообразования, хотя это может привести к совершенно ошибочным ответам. При этом алгоритмы точного решения в учебниках описываются, а необходимый математический аппарат студентам известен. По-видимому, если упрощенный вариант решения невозможен, задачи соответствующих типов в задачник не попадают. Однако задачи, для решения которых требуется аппарат ВМ, наши

студенты должны решать обязательно, иначе треть учебного материала по АХ останется без необходимых упражнений и иллюстраций. Для экономии времени и обеспечения точности расчетов на занятиях по АХ следует использовать компьютеры и специфическое программное обеспечение так же широко, как сегодня используются микрокалькуляторы. Очевидно, при составлении задачников нового поколения, а также при организации расчетных занятий