Математика в живых организмах — страница 7

  • Просмотров 997
  • Скачиваний 16
  • Размер файла 29
    Кб

координат. При таком способе получается, что каждой из двух задних лап нужно передать всего одно число — координату вектора силы (положительную или отрицательную), которую должна создать эта лапа вдоль своей фиксированной оси. Получается очень экономная схема. Но жизнь так полна неожиданностей! Разбираясь в том, какими мышцами создается это фиксированное направление (казалось бы, чего проще: использовать для единичного

вектора одного направления мышцы, двигающие ногу вперед и внутрь, а для создания другого — назад и наружу, а дальше менять пропорционально силу, развиваемую этими мышцами,— “умножать на число”, и все в порядке), Макферсон получила еще один неожиданный результат. Оказалось, что в создании “единичного” вектора могут участвовать разные мышцы, их сочетание меняется в зависимости от направления толчка. В чем смысл такого, с нашей

точки зрения, усложненного решения, еще выяснять и выяснять. Однако здесь проявляется общий принцип живого: избегать жестких схем, иметь всегда избыток “степеней свободы”, словом, плюрализм. Векторы в мозгу обезьяны и человека Трудности в выяснении вопроса о том, как на самом деле происходит решение той или иной задачи, связаны с тем, что заглянуть в “управляющий центр” — в мозг — очень трудно. В этом смысле мозг пока что во

многом “черный ящик”: можно видеть, какая задача ему предложена, можно видеть, какой он выдает результат,— а вот что происходит внутри, об этом сведений еще очень и очень мало. Тем более интересна и важна работа, которая позволила почти непосредственно увидеть, как идет работа мозговых нейронов при решении некоторых задач. Эту работу совсем недавно выполнил американский ученый А. Георгопулос. Он экспериментировал с

дрессированными обезьянами. Лапа обезьяны помещалась в некоторой точке стола, а в различных точках стола помещались электрические лампочки. Обезьяну научили при вспышке какой-нибудь лампочки двигать лапу по направлению к этой лампочке. В это время экспериментатор регистрировал с помощью вживленных электродов активность (частоту импульсации) нервных клеток коры больших полушарий в той ее зоне, которая управляет движениями

этой лапы. Оказалось, что активность большинства клеток этой зоны мозга зависит от направления движения лапы; и эта зависимость достаточно четкая: для каждой из клеток существует такое направление движения, при котором активность максимальна; при других направлениях активность уменьшается примерно как косинус угла между данным направлением максимальной активности. Для тех направлений, для которых косинус отрицателен,