Математические модели в программе логического проектирования — страница 5

  • Просмотров 4550
  • Скачиваний 275
  • Размер файла 132
    Кб

рассматриваемого этапа является таблица истинности, связывающая все возможные комбинации значений аргументов и функций. Пусть, например, требуется синтезировать цифровое устройство, реализующее сложение двух двоичных цифр (полусумматор) . 1-й этап синтеза - даётся словесное описание полусумматора и принципа его работы. Он должен анализировать все комбинации входных сигналов (т. е. двоичных цифр 00, 01, 10, 11) и в соответствии с ними

формировать на выходе двухразрядные суммы. В первом разряде результата формируется цифра переноса, а во втором - цифра многоразрядной суммы. Следовательно, синтезируемый полусумматор должен иметь два входа (n=2) и два выхода. Далее от нестрогого словесного описания переходим к строгому формальному описанию работы полусумматора на табличном языке. Таблица истинности (см. табл. 1.1) в общем случае при n входах имеет 2 в степени n

комбинаций значений аргументов . Таблица 1.1 Таблица истинности полусумматора. 1-я цифра слагаемое Х1 0 0 1 1 2-я цифра слагаемое Х2 0 1 0 1 Цифра переноса р 0 0 0 1 Цифра суммы s 0 1 1 0 2-й этап синтеза - для того чтобы показать методику перехода от таблицы истинности к аналитическому выражению, рассмотрим некоторую обобщённую таблицу истинности двух аргументов f(X1,X2) (см. табл. 1.2). Ограничение на число аргументов не является в данном случае

существенным, но значительно упрощает все рассуждения . Таблица 1.2 Обобщённая таблица истинности функции двух аргументов. 1-й логический аргумент Х1 0 0 1 1 2-й логический аргумент Х2 0 1 0 1 Логическая функция f(X1,X2) f0 f1 f2 f3 Здесь f0=f(0,0); f1=(0,1); f2=(1,0); f3=(1,1) - конкретные реализации функции f(X1,X2) при определённых частных значениях аргументов X1 и X2. Они также являются двоичными переменными. Десятичные индексы при их символах числено равны тем

двоичным числам, которые образуются соответствующими частными значениями аргументов. Кроме того, каждый десятичный индекс можно трактовать как номер некоторого столбца в Таблице 1.2, изменяющийся в пределах от 0 до 2n -1, так как обычно значения аргументов в таблице записываются таким образом, чтобы получающееся из них по вертикали двоичное число было равно номеру столбца. Исходя из вышеизложенного, уже можно перейти от

табличной записи логической функции f(X1,X2) к аналитической : f(X1,X2) = f0 при, х1=0, х2=0 ; f1 при, х1=0, х2=1 ; (1.1) f2 при, х1=1, х2=0 ; f3 при, х1=1, х2=1 ; Такая запись несколько удобнее и компактнее таблицы, однако она всё-таки громоздка и плохо обозрима (особенно в случае большого числа аргументов). Но от неё можно перейти к записи другого вида, более удобной и компактной : f(x1,x2)= x1x2f0+ x1x2f1+ x1x2f2+ x1x2f3 (1.2) Правило построения каждого члена в этом предложении