«Liber аbaci» Леонардо Фибоначчи — страница 5

  • Просмотров 4422
  • Скачиваний 123
  • Размер файла 29
    Кб

число, 19/20 которого равны квадрату самого числа. Ответ: 19/20. Комментарий. Ответ очевиден каждому, кто знаком с понятием квадрата числа. Решая задачу с помощью квадратного уравнения 19/20 x = x2 мы получим еще одно удовлетворяющее условию задачи число – 0. Автор же, очевидно, имел в виду число, отличное от нуля. Что вообще-то неудивительно. Во времена Леонардо Пизанского нуль не признавался за корень уравнения, т.е. за число. Впрочем, это

не мешало некоторым математикам и до, и после Фибоначчи выполнять простейшие операции с нулем, который воспринимался ими как символ, обозначавший «ничто». Задача 2. Некто поместил пару кроликов в некоем месте, огороженном со всех сторон стеной, чтобы узнать, сколько пар кроликов родится при этом в течение года. Природа кроликов такова, что через месяц пара кроликов производит на свет другую пару, а рождаются кролики со второго

месяца. Сколько пар кроликов будет через год? Ответ: 377 пар. Комментарий. Даже одной этой задачи хватило бы Фибоначчи, чтобы оставить след в истории науки. Именно в связи с ней сегодня чаще всего и упоминается имя ученого. Решая задачу о размножении кроликов, Леонардо описал бесконечную числовую последовательность (an), любой член которой, начиная с третьего, выражается через предыдущие члены: a1 = 1, a2 = 1, an+2 = an+1 + an, где n ≥ 1. Для

математиков она является прежде всего классическим примером рекуррентной последовательности, элементы которой, числа Фибоначчи, обладают многими весьма интересными и нашедшими неожиданные применения свойствами. Из них широко известно следующее: предел отношения an+1 к an при неограниченном возрастании n устремляется к знаменитому числу Ф ≈ 1,618, выражающему божественную пропорцию. Что же касается ответа в задаче о кроликах, то

(в соответствии с указанными в тексте условиями) он совпадает с 13-м членом построенной Леонардо последовательности 1, 2, 3, 5, 8, ... – числом 377. Здесь каждое число, начиная со второго, показывают, сколько всего пар кроликов будет насчитываться к началу очередного месяца. Заметим, что Фибоначчи рассматривал свою задачу для взрослой пары кроликов (на это указывают слова «рождаются кролики со второго месяца»). Если же решать ее для

новорожденной пары, получится последовательность (1); в таком случае ровно через год количество животных увеличится до 233 пар особей*. * Спустя полтора столетия индийский математик Нарайана рассматривал похожую задачу: найти число коров и телок, происходящих от одной коровы в течение 20 лет, при условии, что корова в начале каждого года приносит телку, а телка, достигнув трех лет, дает такое же потомство в начале года. Если решать