Лекции по общей физике

  • Просмотров 3257
  • Скачиваний 638
  • Размер файла 545
    Кб

  Лекция 10   8.5. Линии равной толщины Как ясно уже из заголовка, речь пойдет о пластинах (тонких пленках), толщина которых непостоянна. И, по существу, здесь не решается какая-то новая задача: механизм интерференции тот же, что и в случае плоскопараллельной пластине. Можно, например, зафиксировать величину угла падения q, и мы получим готовую формулу, подставив в соответствующее выражение зависимость d от координат. Обычно

принимают значение q=0 - в общем виде выражение громоздко и не представляется полезным. n=1 q 1 2 0 X d0 n>1 a Для реальной пластины зависимость d от координат может быть какой угодно. Традиционно рассматриваются лишь некоторые частные случаи такой зависимости. Например, пластина может иметь форму клина. У показанной на рисунке пластины толщина зависит от координаты x: Для соседних максимумов, очевидно, Dk=1, и мы имеем для ширины

интерференционной полосы: Мы, вроде, получили новую формулу, но, оказывается, она нам знакома. Действительно, после отражения от поверхностей и преломления лучи 1 и 2 расходятся под углом q=2an, мы же при анализе интерференции волн от двух точечных источников получили для ширины интерференционной полосы выражение экран изображ. поверхности 1 2 локализации линза 1 2 поверхность локализации пластина При интерференции волн от двух

точечных источников волны реально, “на самом деле” взаимодействуют, складываются на поверхности экрана. Теперь же эти волны (1 и 2) после отражения от двух поверхностей расходятся под углом q. Возникает вопрос, где же они интерферируют друг с другом или, как принято выражаться, где локализованы интерференционныу полосы. Ответ на этот вопрос поясняется рисунком. Для наблюдения интерференции отраженных от поверхностей пластины

(клина) волн используется линза и экран, на котором создается изображение поверхности локализации интерференционных полос. Эта последняя образована точками пересечения продолжений луча 1 (он “начинается” от верхней поверхности пластины) и луча 2 после его преломления. Другая традиционно рассматриваемая задача - кольца Ньютона. Это также линии равной толщины, но роль пластины здесь играет воздушный промежуток между плоской