Кластерный анализ в портфельном инвестировании — страница 5

  • Просмотров 2630
  • Скачиваний 245
  • Размер файла 57
    Кб

вида: [1,стр.143] где Rkm – доходность по k-й ценной бумаге за m-й период, Далее, разбиение на кластеры происходит через вычисление евклидова расстояния между ценными бумагами p и q по формуле [1,стр.144] где m – номер периода, sRm – среднеквадратическое отклонение доходности за период m. Критическая величина разбиения предполагается равной квадратному корню из количества периодов T, то есть средней величине евклидового расстояния: [1,стр.144]

Преимущество данной методики заключается, во-первых, в том, что она позволяет с крайне высокой степенью точности группировать ценные бумаги со сходными тенденциями в изменении доходности на протяжении всего периода, определяющего базу прогноза, что дает основания рассчитывать на сохранение подобной тенденции и в дальнейшем. Вторым ее преимуществом является возможность полной автоматизации, что значительно облегчает

работу, позволяя использовать современные вычислительные средства, а также обрабатывать однородную информацию, получаемую из электронных баз данных. Поэтому она может быть без особых затруднений внедрена не только в компьютерных системах отдельных фирм, занимающихся инвестированием, но также и на соответствующих ресурсах сети интернет. Пожалуй, наиболее острой проблемой, возникающей перед специалистами по факторному

анализу, является подбор четких и ясных критериев, позволяющих отсеять малозначимые факторы, повышающие размерность модели без увеличения ее точности, и при этом правильно определить вес для остальных факторов. Доказательством важности этого вопроса, а также отсутствия однозначно оптимальных решений, является изобилие всевозможных критериев отбора значимых компонент. Достаточно назвать такие известные методы, как расчет

варимакс-критерия, n-критерий, отбор при помощи t-критерия Стьюдента и т.п. Очевидно, что вводить в модель очередной фактор целесообразно только в том случае, если он в достаточной степени понижает уровень энтропии, а, следовательно, увеличивает значение R-квадрат. Каким образом численно выразить прирост данной величины в зависимости от количества вводимых факторов? Рассмотрим эту проблему в свете коэффициентов

последовательной детерминации. Пусть имеются N факторов X1...XN, предположительно влияющих на доходность инвестиционного портфеля. При вводе в уравнение регрессии фактора Xi показатель R-квадрат принимает некоторое определенное значение. Выберем фактор, при котором оно будет наибольшим: [1,стр.145] где P12 - коэффициент последовательной детерминации для данного фактора, ryx1 - парный коэффициент корреляции между доходностью и этим