Кинематический анализ механизма транспортирования ткани — страница 8

  • Просмотров 3086
  • Скачиваний 23
  • Размер файла 126
    Кб

итераций и дает ряд оптимальных механизмов с различной степенью приближения. Вариационный метод синтеза одно‑ и многоконтурных плоских механизмов с одной степенью свободы, предназначенных для управления движением твердых тел через заданные положения на плоскости предложен Э.Е.Пейсахом [33]. Посредством минимизации целевой функции, представляющей собой сумму квадратов ошибок в вычислительных координатах двух точек тела,

определены оптимальные размеры механизма. Решение расчетных уравнений производится матричным методом итерации и релаксационным методом Гаусса. Для плоского механизма, воспроизводящего плоскую траекторию, задачу синтеза удается свести к задаче оптимизации, накладывая ограничения, обеспечивающие совмещение двух точек тела. Для управления движением твердого тела и воспроизведения траектории точки этого тела синтезированы

шестизвенный механизм Стефенсона типа I и плоский четырехзвенный шарнирный механизм. В статье [34] рассмотрен процесс оптимизации, в котором исследованы результаты, полученные при моделировании на АВМ движения плоского шарнирного четырехзвенника. Показана сложность аналитического выражения для шатунной кривой, что обусловливает необходимость применения сложного метода при синтезе этой кривой. Показано, что минимизация

ошибки согласования между требуемой и полученной шатунными кривыми достигается с помощью комбинации релаксационного и градиентного методов. D.W.Levis и C.K.Gyory в работе [35] показывают, что траектория точки шатуна плоского механизма является кривой, которую можно описать рядом парных координат. Последовательный подбор параметров конкретного механизма осуществляется методом “затухающих наименьших квадратов”. Последовательное

применение этого метода дает оптимальное приближение к заданной кривой, описываемой рядом парных координат. В качестве примера этот метод был применен к четырехзвенному механизму. Задача синтеза шарнирного четырехзвенного механизма в работе [35] представлена как задача математического программирования, которая заключается в проектировании шарнирного четырехзвенника, присоединительная точка которого описывает заданную

кривую с наибольшей точностью, а повороты кривошипа с возможно большей точностью соответствуют требуемым значениям. При этом накладывается ряд ограничений: на размеры звеньев механизма, на положения шарнирных точек, на величины сил и моментов звеньев механизма и т.д. Решение авторы получают методом итераций с помощью ЭВМ. Приведены примеры механизмов, воспроизводящих прямую линию, кривую в форме восьмерки и дугу окружности. В