Катод Спиндта — страница 6

  • Просмотров 2231
  • Скачиваний 209
  • Размер файла 41
    Кб

соответствуют напряжению 150 – 300В на управляющем электроде. На этом рисунке приведены, рассчитанные с использованием закона Фаулера – Норд гейма, где плотности тока эмиссии от угла для напряжений V=150 и 300В. Видно, что основной вклад в автоэмиссионный ток дают точки поверхности, для которых можно использовать для определения эффективной площади эмиссии: (3) где r – радиус скругления острия. Полный ток е острия равен: (4) где для

напряжённости поля на поверхности острия Формулы (3) и (4) совместно определяют эффективную площадь эмиссии и предельный угол . Для корректного определения необходимо найти - зависимость коэффициента усиления от угла, затем интегрированием вычислить полный ток с острия и воспользоваться формулой (4). Определённая таким способом эффективная площадь эмиссии зависит от напряжения. Представление о порядке величины площади эмиссии

можно получить более просто, если считать, что угол автоэмиссии соответствует уменьшению коэффициента усиления поля на 10%. Тогда следует определить из графика такое значение и воспользоваться формулой (3). В этом случае оценка для эффективной площади, очевидно, не зависит от напряжений. Полученная оценка для Данные рассуждения справедливы в случае атомарно гладкой поверхности острия. Если же на нем существуют

микронеоднородности более мелких масштабов, чем радиус скругления острия, то вблизи них электрическое поле дополнительно усиливается. Из-за очень резкой зависимости плотности тока от напряжённости поля, полный ток полностью определяется эмиссией с микро неоднородностями. Эффективная площадь эмиссии в соответствии с формулой (3) имеет порядок Плотность упаковки эмиттеров. Сообщается о том, что достигнута плотность упаковки

около Время жизни. Приведённые данные свидетельствуют о большой долговечности автоэмиссионных катодов. Непрерывное испытание в вакуумной камере катода со100 остриями продолжалось в течении более чем 8 лет при уровне эмиссии от 20мкА до 50мкА с остриями, и было прервано из-за неисправности ионного насоса. Дальнейшее развитие тонкопленочных катодов связанно, прежде всего, с уменьшением их геометрических размеров и увеличением

плотности упаковки, что позволяет достигнуть сразу несколько целей. Уменьшение расстояние остриё-управляющий электрод и уменьшение радиуса острия понижает рабочее напряжение. Одновременно снижаются требования к вакууму, поскольку уменьшается вероятность ионизации и энергия ионов, бомбардирующих катод. Увеличение плотности упаковки эмиттеров увеличивают среднюю плотность тока, которую способен обеспечить