Как отмыть химическую посуду от водорослей? — страница 2

  • Просмотров 198
  • Скачиваний 16
  • Размер файла 36
    Кб

несколько максимумов (рис.1б)! Рис. 1. Дальнейшие исследования показали, что для каждого образца металла, общий вид кривой сугубо индивидуален. Это касается числа максимумов и их высоты. У пробы Ag оказалось 3 максимума, а у Ta 1-2 максимума. Интересно сказывалось изменение активности пробы. С увеличением активности пробы график растягивался по оси H. Положение максимумов по оси абсцисс смещалось, но высота максимумов оставалась

прежней. Таким образом, график содержал неизменные характерные особенности исследуемого металла. Продолжая исследования, я объединил в один образец Ag и Ta. Картина была такова, как будто каждый металл увеличил свою активность, т.е. график закономерности A от H растянулся по оси абсцисс. Однако высота пиков Ag и Ta была такой же, как и до создания объединенного образца (рис. 2). Рис. 2. В процессе проведения опытов, выяснились еще

некоторые важные подробности. Дело в том, что описанная выше картина появлялась только на некоторых режимах работы прибора ПП-15А. Если прибор регистрировал все импульсы, то никаких эффектов не наблюдалось. Если прибор был настроен на регистрацию только части импульсов по признаку регистрируемого напряжения, то эффекты были налицо. Для того чтобы убедиться лишний раз в наблюдаемом явлении, я соединил датчик с прибором через

потенциометр. Вращая ручку потенциометра, т.е. уменьшая амплитуду входного сигнала по напряжению, я возвращал вышеописанные эффекты. Кроме того, вращение ручки потенциометра вызывало уменьшение или увеличение числа максимумов на графике. Складывалось такое впечатление, что сложную закономерность изменения A от H создают импульсы большой величины по напряжению. К большому сожалению, я до сих пор не понимаю природы

наблюденного мной явления! Попытки моих коллег объяснить эффекты вторичным излучением, которое возникает при облучении металлических частей детектора, я так и не принял во внимание, считая их несколько искусственными. ЗАПОЛНЕНИЕ ХЛОРСЕРЕБРЯНОГО ЭЛЕКТРОДА Хлорсеребряный электрод для потенциометрических измерений конструктивно представляет собой проточный резервуар с насыщенным раствором хлорида калия, в который опущен

токоотвод. Токоотвод представляет собой серебряную проволоку, покрытую солью хлористого серебра. Проточный резервуар сообщается с исследуемым раствором через асбестовый фитиль или керамическую пористую вставку. Электрод исправно работает только в том случае, если раствор хлористого калия постоянно истекает из резервуара! Несмотря на то, что хлористое серебро является нерастворимым в воде соединением, растворение все-таки