Как ген, хромосома и клетка противодействуют среде и избегают гибели — страница 9

  • Просмотров 836
  • Скачиваний 17
  • Размер файла 128
    Кб

хромосом, а указывают на строгую упорядоченность в строении генов. У эукариот большинство генов состоит из нетранскрибируемых участков ДНК, разделенных участками, которые транскрибируются и транслируются. Число нитронов может достигать 16, как, например, у куриного гена, кодирующего белок овотрансферрин мРНК образуется путем сплайсинга РНК из экзонов. Процесс соединения участков РНК, происходящих из обособленных экзонов,

отличается выраженной упорядоченностью. При сборке они соединяются соответствующими концами и в нужной последовательности. Прерывистый ген представляет собой частный случай хромосомного поля. Первый выявляет упорядоченность в пределах гена, а второе – в пределах хромосомы. Хромосома поддерживает постоянство, вводит новшества и производит разведку, пользуясь собственными средствами. Хромосоме не нужен отбор для того,

чтобы поддерживать постоянство, вводить новшества или производить разведку. Она содержит в себе все механизмы, необходимые для осуществления этих трех процессов. Поддержание постоянства и введение новшеств – функции антагонистические, но в мире молекул можно найти множество примеров антагонизма. Один из них – антагонизм или ингибирование гормонов, как в случае взаимно противоположных и ингибирующих действий андрогенов и

эстрогенов. Поддержание постоянства достигается путем сохранения генных последовательностей. В этом участвует несколько механизмов: 1) репарация ДНК, состоящая в замене тех оснований, которые неправильно включились или модифицировались; 2) коррекция, осуществляемая ДНК-полимеразой, которая вырезает участки ДНК, непригодные для репликации; 3) элиминация целых хромосомных участков, целых хромосом и целых хромосомных наборов.

Такая элиминация – упорядоченный процесс, которому предшествуют маркировка и узнавание на молекулярном уровне. Введение новшеств, или создание новых генных последовательностей, хорошо установлено на молекулярном уровне. Ген иммуноглобулина создан хромосомой с использованием тривиальных молекулярных механизмов. Две последовательности ДНК, которые в клетках зародышевой линии мышей непосредственно не функционировали, т.е.

не транскрибировали РНК, а поэтому не могли рассматриваться как структурные гены, объединяются при помощи перестроек в соматических тканях, в результате чего они становятся активными и образуют ген иммуноглобулина. Избыточность и амплификация также представляют собой процессы, ведущие к новшествам. Они не только увеличивают число копий генов, но и порождают новые взаимодействия между существующими генами, модифицируя их