История Рейнольдса — страница 7

  • Просмотров 1904
  • Скачиваний 221
  • Размер файла 37
    Кб

случайные силы, которые даже при самой малой величине за длительное время действия приведут к непредсказуемым результатам. Такие системы чувствительны не только к начальным значениям параметров, но и к изменениям положений и скоростей в разных точках траектории Получается парадокс: система подчиняется однозначным динамическим законам, и совершает непредсказуемые движения. Решения динамической задачи реализуются, если они

устойчивы. Например, нельзя видеть сколь угодно долго стоящий на острие карандаш или монету, стоящую на ребре. Но тогда задача из динамических переходит в статистическую, т е. следует задать начальные условия статистическим распределением и следить за его эволюцией. Эти случайные явления получили название хаосов Рис 178 Фазовая траектория маятника а - без затухания, б-с затуханием Эволюцию динамических систем во времени

оказалось удобным анализировать с помощью фазового пространства - абстрактного пространства с числом измерений, равным числу переменных, характеризующих состояние системы Примером может служить пространство, имеющее в качестве своих координат координаты и скорости всех частиц системы Для линейного гармонического осциллятора (одна степень свободы) размерность фазового пространства равна двум (координата и скорость

колеблющейся частицы) Такое фазовое пространство есть плоскость, эволюция системы соответствует непрерывному изменению координаты и скорости, и точка, изображающая состояние системы, движется по фазовой траектории (рис 178) Фазовые траектории такого маятника (линейного гармонического осциллятора), который колеблется без затухания, представляют собой эллипсы (mv2^) + (mo)^/2) x2 = const В случае затухания фазовые траектории при любых

начальных значениях оканчиваются в одной точке, которая соответствует покою в положении равновесия и точка, или аттрактор, как бы притягивает к себе со временем все фазовые траектории (англ to attract "притягивать") и является обобщением понятия равновесия, состояние, которое притягивает системы Маятник из-за трения сначала замедляет колебания, а затем останавливается На диаграмме его состоянии (фазовой диаграмме) по одной

оси откладывают угол отклонения маятника от вертикали, а по другой - скорость изменения этого угла Получается фазовый портрет в виде точки, движущейся вокруг начала отсчета Начало отсчета и будет аттрактором, поскольку как бы притягивает точку, представляющую движение маятника по фазовой диаграмме В таком простом аттракторе нет ничего странного В более сложных движениях, например, маятника часов с грузом на цепочке, груз