Иррациональные уравнения — страница 4

  • Просмотров 6637
  • Скачиваний 403
  • Размер файла 75
    Кб

данного уравнения и значит, исходное уравнение имеет один корень х=-2. В этом случае говорят, что уравнение х²+х–2=0, есть следствие уравнения пусть даны два уравнения: f1 (x) = g1 (x) (3) f2 (x) = g2 (x) (4) Если каждый корень уравнения (3) является корнем уравнения (4), то уравнение (4) называют следствием уравнения (3). Этот факт записывают так: В том случае, когда уравнение (3) - есть также следствие уравнения (4), эти уравнения равносильны. Два

уравнения равносильны в том, и только в том случае, когда каждое из них является следствием другого. В приведенном выше примере уравнение – следствие х²+х–2=0, имеет два корня x1=1 и х2 =-2, а исходное уравнение имеет один корень х=-2. В этом случае корень х=1 называют посторонним для исходного уравнения В общем случае корни уравнения-следствия, не являющиеся корнями исходного уравнения, называют посторонними. Итак, если при решении

уравнения происходит переход к уравнению – следствию, то могли появиться посторонние корни. В этом случае все корни уравнения-следствия нужно проверить, подставляя их в исходное уравнение. В некоторых случаях выявление посторонних корней облегчается знанием ОДЗ исходного уравнения – корни, не принадлежащие ОДЗ, можно сразу отбросить. Так, в приведенном примере посторонний корень х=1 не входит в ОДЗ уравнения и потому

отброшен. Иногда посторонние корни могут появиться и при тождественных преобразованиях, если они приводят к изменению ОДЗ уравнения. Например, после приведения подобных членов в левой части уравнения ОДЗ которого {х ¹-2}, получим уравнение следствие х²-4=0 имеющее два корня х1 = 2, х2 = -2 корень х2 = -2 – посторонний, так как не входит в ОДЗ исходного уравнения. В тех случаях, когда в результате преобразований произошел переход от

исходного уравнения к уравнению, не являющемуся его следствием, возможна потеря корней. Например, уравнение (х+1)(х+3)= х+1 (5) Имеет два корня. Действительно, перенося все члены уравнения в левую часть и вынося х+1 за скобки, получим (х+1)(х+2)=0, откуда находим х1=-1, х2=-2 . Если же обе части уравнения (5) разделить («сократить») на х+1, то получим уравнение х+3=1, имеющее один корень х=-2. В результате такого преобразования корень х=-1 потерян.

Поэтому делить обе части уравнения на выражение, содержащее переменную, можно лишь в том случае, когда это выражение отлично от нуля. Для того, чтобы в процессе решения уравнения избежать потери корней, необходимо следить за тем, чтобы переход осуществлялся либо к равносильным уравнениям, либо к уравнениям-следствиям. 2.2. Определение иррациональных уравнений. Иррациональными называются уравнения, в которых переменная