Иррациональные уравнения — страница 3

  • Просмотров 6634
  • Скачиваний 403
  • Размер файла 75
    Кб

и рациональные, изображаются точками. Это геометрическое толкование позволило лучше понять природу иррациональных чисел и способствовало их признанию. В современных учебных руководствах основа определения иррационального числа опирается на идеи ал-Каши, Стевина и Декарта об измерении отрезков и о неограниченном приближении к искомому числу с помощью бесконечных десятичных дробей. Однако обоснованием свойств

действительных чисел и полная теория их была разработана лишь в XIX в. 2. ОПРЕДЕЛЕНИЕ ИРРАЦИОНАЛЬНЫХ УРАВНЕНИЙ 2.1.         Равносильные уравнения. Следствия уравнений. При решении уравнений выполняются различные тождественные преобразования над выражениями, входящими в уравнение. При этом исходное уравнение изменяется другими, имеющими те же корни. Такие уравнения называются равносильными. Определение:

Уравнение f(x)=g(x) равносильно уравнению f1(x)=g1(x), если каждый корень первого уравнения является корнем второго и обратно, каждый корень второго уравнения является корнем первого, т.е. их решения совпадают. Например, уравнения 3x-6=0; 2х–1=3 равносильны, т.к. каждое из уравнений имеет один корень х=2. Любые два уравнения, имеющие пустое множество корней, считают равносильными. Тот факт, что уравнения f(x)=g(x) и f1(x)=g1(x) равносильны, обозначают

так: f(x)=g(x) f1(x)=g1(x) В процессе решения уравнений важно знать, при каких преобразованиях данное уравнение переходит в равносильное ему уравнение. Теорема 1: Если какое-либо слагаемое перенести из одной части уравнения в другую, изменив его знак, то получим уравнение, равносильное данному. Доказательство: Докажем, что уравнение f(x) = g(x)+q(x) (1) равносильно уравнению f(x) – q(x) = g(x) (2) Пусть х=а – корень уравнения. Значит имеет место числовое

равенство f(a)=g(a)+q(a) . Но тогда по свойству действительных чисел будет выполняться и числовое равенство f(a)-q(a)=g(a) показывающее, что а – корень уравнения (2). Аналогично доказывается, что каждый корень уравнения (2) является и корнем уравнения (1). Что и требовалось доказатью. Теорема 2: Если обе части уравнения умножить или разделить на отличное от нуля число, то получим уравнение, равносильное данному. Доказательство: докажем, что

уравнение 6х–3=0 равносильно уравнению 2х–1=0 решим уравнение 6х–3=0 и уравнение 2х–1=0 6х=3 2х=1 х=0,5 х=0,5 так как корни уравнений равны, то уравнения равносильны. Что и требовалось доказать. Рассмотрим уравнение ОДЗ этого уравнения {х ≠ 1, х ≠ -3} Мы знаем, что дробь равна нулю в том случае, когда ее числитель равен нулю, т.е. х²+х–2=0, а знаменатель не равен 0. Решая уравнение х²+х–2=0, находим корни х1=1, х2 = –2 . Но число 1 не входит в ОДЗ