Иррациональные уравнения

  • Просмотров 6364
  • Скачиваний 398
  • Размер файла 75
    Кб

СОДЕРЖАНИЕ. Введение 3 стр. 1.Из истории 4стр. 2.Определение иррациональных уравнений 2.1.Равносильные уравнения. Следствия уравнений. 6 стр. 2.2.Опреднление иррациональных чисел. 9 стр. 3.Методы решения иррациональных уравнений. 3.1.Решение иррациональных уравнений методом возведения обеих частей уравнения в одну и ту же степень. 10стр. 3.2.Метод введения новых переменных. 12 стр. 3.3.Исскуственные приёмы решения иррациональных

уравнений 13 стр. Заключение 15 стр. Список используемой литературы 16 стр. ВВЕДЕНИЕ В школьном курсе алгебры рассматриваются различные виды уравнений – линейные, квадратные, биквадратные, кубические, рациональные, с параметрами, иррациональные и другие. Данная курсовая работа посвящена иррациональным уравнениям, методам их решения. Кроме того, в работе введены понятия уравнений следствий и равносильных уравнений, а также

приведены примеры задач, математическими моделями которых служат иррациональные уравнения. В данной работе содержится небольшая историческая справка, посвященная введению иррациональных чисел 1. ИЗ ИСТОРИИ Термин «рациональное» (число) происходит от латиноамериканского слова ratio – отношение, которое является переводом греческого слова “логос”в отличие от рациональных чисел, числа, выражающие отношение несоизмеримых

величин, были названы еще в древности иррациональными, т.е. нерациональными (по-гречески “алогос”) правда, первоначально термины “рациональный” и “иррациональный” относились не к числам, а к соизмеримым и соответственно не соизмеримым величинам, которые пифагорейцы называли выразимыми и невыразимыми, Теодор Киренский же симметричными и ассимметричными. В V-VI вв. римские авторы Капелла и Кассиодор переводили эти термины на

латынь словами rationalis и irrationalis. Термин «соизмеримый» (commensurabilis) ввел в первой половине VI в. другой римский автор- Боэций. Древнегреческие математики классической эпохи пользовались только рациональными числами (вернее целыми, дробными и положительными). В своих «Началах» Евклид излагает учение об иррациональностях чисто геометрически. Математики Индии, Ближнего и Среднего Востока, развивая алгебру, тригонометрию и астрономию,