Интеграл по комплексной переменной. Операционное исчисление и некоторые его приложения

  • Просмотров 1834
  • Скачиваний 231
  • Размер файла 179
    Кб

Интеграл по комплексной переменной. Определение 1: Кривая Г называется гладкой ,если она имеет непрерывно изменяющуюся касательную. Определение 2: Кривая называется кусочно-гладкой ,если она состоит из конечного числа гладких дуг. Основные свойства : Пусть на комплексной плоскости Z задана кусочно-гладкая кривая С длиной l, используя параметрическое задание кривой С зададим h(t) и x (t), где h и x являются кусочно-гладкими кривыми

от действительной переменной t. Пусть a<= t<=b, причем a и b могут быть бесконечными числами . Пусть x и h удовлетворяют условию : [x‘(t)]2 + [h‘(t)]2 ¹ 0. Очевидно, что задание координат h =h(t) и x=x (t), равносильно заданию комплексной функции z (t)= x (t) + ih(t). Пусть в каждой точке z (t) кривой С определена некоторая функция f (z ). Разобьем кривую С на n – частичных дуг точками деления z0 , z1 , z2 , …, z n-1 соответствующие возрастающим значениям параметра t,

т.е. t0, t1, …, t i+1 > t i. Dz i =z i – z i-1. Составим интегрируемую функцию S = åf (z*)Dz i . (1) где z*– производная точки этой дуги. Если при стремлении max |Dz i |® 0 существует предел частных сумм не зависящий ни от способа разбиения кривой С на частичные дуги, ни от выбора точек z i , то этот предел называется интегралом от функции f (z ) по кривой С. (2) f (zi* ) = u (Pi*) + iv (Pi*) (3) где Dz i = Dx (t) + iDh(t) (x (t) и h(t) - действительные числа) Подставив (3) в (1) получим : (4)

Очевидно, что (4) состоит из суммы двух частных сумм, криволинейных интегралов действительной переменной. Переходя в (4) к пределу при Dx и Dh ® 0 и предполагая, что данные пределы существуют, получаем : (5) Заметим, что для существования криволинейного интегралов, входящих в (5), а тем самым и для существования интеграла (2) достаточно кусочной непрерывности функций u и v. Это означает, что (2) существует и в случае неаналитичности функции f

(z ). Сформулируем некоторые свойства интеграла от функции комплексной переменной. Из равенства (5) следуют свойства : О ограниченности интеграла. При этом z = j (z ). 7.) Пусть Cp – окружность радиуса r, с центром в точке Z0. Обход вокруг контура Cp осуществляется против часовой стрелки. Cp : z = Z0 + r×eij, 0 £ j £ 2p, dz = ir×eij dj . Кусочно-гладкую замкнутую кривую будем называть замкнутым контуром, а интеграл по замкнутому контуру – контурным