Инфракрасное зрение змей — страница 8

  • Просмотров 1532
  • Скачиваний 17
  • Размер файла 67
    Кб

мембрану и создают «тепловое изображение». Благодаря высочайшей чувствительности клеток-рецепторов (детектируется разница температур в тысячные доли градуса Цельсия!) и неплохому угловому разрешению, змея может заметить мышь в абсолютной темноте с довольно большого расстояния. С точки зрения физики как раз хорошее угловое разрешение и представляет собой загадку. Природа оптимизировала этот орган так, чтобы лучше «видеть»

даже слабые источники тепла, то есть попросту увеличила размер входного отверстия — апертуры. Но чем больше апертура, тем более размытое получается изображение (речь идет, подчеркнем, про самое обычное отверстие, безо всяких линз). В ситуации со змеями, где апертура и глубина камеры примерно равны, изображение оказывается настолько размытым, что из него ничего, кроме «где-то поблизости есть теплокровное животное», извлечь

нельзя. Тем не менее опыты со змеями показывают, что они могут определять направление на точечный источник тепла с точностью около 5 градусов! Как же змеям удается достичь столь высокого пространственного разрешения при таком ужасном качестве «инфракрасной оптики»? Изучению именно этого вопроса была посвящена недавняя статья немецких физиков A. B. Sichert, P. Friedel, J. Leo van Hemmen, Physical Review Letters, 97, 068105 (9 August 2006). Раз реальное «тепловое

изображение», говорят авторы, сильно размыто, а «пространственная картина», возникающая у животного в мозгу, довольно четкая, значит существует некий промежуточный нейроаппарат на пути от рецепторов к мозгу, который как бы настраивает резкость изображения. Этот аппарат не должен быть слишком сложным, иначе змея очень долго «обдумывала» бы каждое полученное изображение и реагировала бы на стимулы с запаздыванием. Более того,

по мнению авторов этот аппарат вряд ли использует многоступенчатые итеративные отображения, а является, скорее, каким-то быстрым одношаговым преобразователем, работающим по навсегда зашитой в нервную систему программе. В своей работе исследователи доказали, что такая процедура возможна и вполне реальна. Они провели математическое моделирование того, как возникает «тепловое изображение», и разработали оптимальный алгоритм

многократного улучшения его четкости, окрестив его «виртуальной линзой». Несмотря на громкое название, использованный ими подход, конечно, не является чем-то принципиально новым, а всего лишь разновидность деконволюции — восстановления изображения, испорченного неидеальностью детектора. Это процедура, обратная смазыванию картинки, и она широко применяется при компьютерной обработке изображений. В проведенном анализе,