Hpor — страница 7

  • Просмотров 5473
  • Скачиваний 82
  • Размер файла 40
    Кб

-3=0; 3(x^2 –1)=0; x=0 или x=1. Б) точек в к-рых производная не существует нет. 3) y(-1)=-1+3=2; y(1)=1-3=2; y-(-1.5)=(1.5)^3-3* (-1.5)=(-1.5)^3+2*1.5^2=1.5^2(-1.5+2)=2.25*.5=1.125 y(3)=27-9=18; -2<1.125<2<18 y(1)<y(-1.5)<y(-1)<y(3). Min -1,5;3 y(x)=y(1)=-2 Max -1,5;3 y(x)=y(3)=18 2) 1.sin a+ sin b = 2 sin (a+b)/2 *cos(a-b)/2, 2. sin a- sin b=2 sin(a-b)/2 *cos(a+b)/2, 3. cos a+ cos b=2 cos (a+b)/2*cos (a-b)/2 4. cos a- cos b=-2 sin (a+b)/2*sin (a-b)/2 1)Пусть a=x+y и b=x-y из этих равенств находим: x=(a+b)/2 и y=(a-b)/2 2) выведем ф-лы для суммы и разности синусов. Докажем формулу 1: Воспользовавшись

формулами синуса суммы и синуса разности имеем sin a+sin b = =sin(x+y)+ sin(x-y)= sin x cos y+ sin y cos x+ sin x* cos y-sin y*cos x= 2sin x*cos y= 2 sin(a+b)/2*cos(a-b)/2. Таким образом sin a+ sin b=2sin(a+b)/2*cos(a-b)/2 Докажем формулу 2: Sin a-sin b= sin (x+y)- sin(x-y)=sin x cos y+ sin y*cos x –sin x*cos y+sin y*cos x= 2 sin y*cos x=2 sin(a-b)/ 2 * cos(a+b)/2. Таким образом sin a- sin b=2 sin(a-b)/2 *cos(a+b)/2, 3) выведем ф-лы для суммы и разности косинусов. Докажем формулу 4: Cos a- cos b=cos(x+y)-cos(x-y)=cos x* cos y-sin x* sin y-cos x*cos y-sin x*sin y=-2sin x*sin y=-2sin(a+b)/2*sin(a-b)/2 Таким образом cos a- cos b=-2 sin

(a+b)/2*sin (a-b)/2 Билет №14 1) Пусть задана ф-ция y=f(x) ее график изображен на рис 49. Точка х1 является точкой максимума , х2 является точкой минимума, т.е. точки х1 и х2- точки экстремума. Значения ф-ции в точках экстремума наз-ся экстремумами ф-ции. Например, значения ф-ции y=cos x в точках x= 2 пи k,где k Z, явл-ся экстремумами (максимумами)ф-ции,т.е. Ymax=1 2) 1.Cos (a-b)=cos a*cos b +sin a*sin b; 2.cos (a+b)=cos a*cos b- sin a*sin b; 3. sin(a-b)=sin a*sin b- sin b*cos a 4. sin (a+b)=sin a*cos b+sin b*cos a Докажем ф-лу

(1): 1) проведем радиуо ОА, равный R, вокруг точки О на угол a и b (рис50). Получим радиус ОВ и радиус ОС. 2)Пусть В(х1;у1) С(х2;у2). 3) Введем векторы ОВ(х1;у1) , ОС(х2;у2) 4)По опр-ию скалярного произведения ОВ*ОС=х1*х2+у1*у2 (*) 5) по опр-ию синуса и косинуса х1=R*cos a, y1=R*sin a, x2=R* cos b, y2=R*sin b 6) заменяя в равенстве(*) х1,х2,у1,у2, получим ОВ*ОС=R^2*cos a*cos b+R^2*sin a*sin b (**). 7) По теореме о скалярном произведении векторов ОВ*ОС=|OB|*|OC|*cosBOC=R^2 cosBOC, BOC= a-b(см. рис. 50) или BOC= 2 пи-(a-b)

(см. рис. 51) cos(2 пи-(a-b))=cos(a-b) следовательно ОВ*ОС=R^2*cos (a-b) (***) 8) Из неравенств (**) и (***) получим: R^2*cos(a-b)=R^2* cos a*cos b+R^2*sin a*sin b. Разделив левую и правую части на R^20 получим формулу (1) косинуса разности Cos (a-b)=cos a*cos b +sin a*sin b; С помощью этой формулы легко вывести формулу (2) косинуса суммы и (4) синуса суммы: Cos (a+b)=cos(a-(-b))=cos a*cos(-b)+sin a*sin (-b)= cos a*cos b-sin a*sin b значит cos(a+b)=cos a*cos b- sin a*sin b. Докажем формулу (4): sin (a+b)=cos(пи/2-(a+b))=cos((пи/2-a)-b)=cos(пи/2-a)cos b+sin(пи/2-a)sin b=sin a*cos b+cos

a*sin b Значит sin (a+b)=sin a*cos b+sin b*cos a Докажем формулу (3) Применяя последнюю формулу имеем sin(a-b)=sin(a+(-b))=sin a*cos (-b)+sin(-b)*cos a=sin a*cos b-sin b*cos a. Значит sin(a-b)=sin a*cos b-sin b*cos a. При док-ве формул (1)-(4) были использованы следующие факты:1) формулы приведения 2)ф-ция y=sin x-нечетная, ф-ция y=cos x-четная. Из формул сложения пологая b=пи n/2, где nN, можно вывести формулы привидения для преобразований выражений вида cos(пи*n/2 a), sin(пи*n/2 a). Например cos(пи*n/2 a)= cos пи/2*cos a+sin