Hpor — страница 6

  • Просмотров 5566
  • Скачиваний 82
  • Размер файла 40
    Кб

всей области определения. Этот факт следует из того что рациональные и дробно-рациональные ф-ции дефференцируемы во всех точках своих областей опр-ия. Например: ф-ция f(x)=x^3-7X^2+24x непрерывна на множестве действительных чисел; а ф-ция g(x)=(x^3+8)/(x-2) непрерывна на промежутке (-:2) и на промежутке (2;+ ) 2. Логарифмом числа b наз-ся показатель степени в к-рую нужно возвести основание а чтобы получить число b. Из опр-ия имеем: a^ logab =b (осн-ое

лог-ое тождесто) Св-ва логарифмов: При любом а>0(а1), и любых пол-ных х и у выполняются следующие св-ва: loga1=0 logaа=1 loga(ху)= logaХ+ logaУ Док-во: Воспользуемся осн-ным лог-им тождеством a ^ logab =b и св-ом показат-ной ф-ции а^ х+у =а^x * а^y имеем а^ loga(xy)=xy= a^ logax *a^ logay =a ^logax +logay loga(Х/У)= logaХ- logaУ logaХ^Р= рlogaХ Формула перехода: logaХ= logbX/ logbA Билет №10. 1. Ф-ция F наз-ся первообразной ф-ции f на промежутке I, если для всех значений аргумента из этого промежутка F(x)=f(x).

Например ф-ция F(x)=4x^2+3x-1 явл-ся первообразной ф-ции f(x)=12x^3 на множестве всех действительных чисел. Действительно F(x)=12X^2+3 , т.е. F(x)=f(x). 2. Если каждому действительному числу поставлен в соответствие его тангенс , то говорят , что задана ф-ция тангенс. Обозначается это так: y=tg x. Св-ва:1) Областью опр-ния ф-ции явл-ся все действительные числа, кроме чисел вида X=пи/2 +пи k, kZ. Это следует из опред-ия тангенса (tg x=sin x/cos x). Нужно искл-ть числа,

при к-рых знаменатель cos x=0 т.е. х= пи/2+пи k, kZ. 2) Множеством значений ф-ции явл-ся все действительные числа:Е(у)=(-;+). 3) Ф-ция явл-ся нечетной ф-цией, т.е. для любого хD(y) выполняется нер-во tg(-x)=-tg x . покажем это, tg (-x)=sin (-x)/cos (-x)= -sin x/cos x= -tg x 4) Ф-ция явл-ся периодической с периодом пи k ,где k-целое кроме 0.Наименьшим положительным периодом тангенса явл-ся число пи. 5) Ф-ция тангенс принимает значения 0 при х=пи k, kZ. Решением ур-ия tg x=0 явл-ся

числа х=пи k, kZ 6) Ф-ция tg принимает положительные значения при пи k<x<пи/2+ пи k, kZ. Ф-ция tg принимает отрицательные значения при -пи/2+пи k<x<пи k, kZ . Промежутки знакопостоянства следуют из опр-ия tg x=sin x/cos x. 7) Ф-ция tg возрастает на всей области опр-ия т.е. на промежутках (-пи/2+пи k; пи/2 +пи k) kZ Билет №13 1) Для того чтобы найти наибольшее(наименьшее) значение ф-ции y=f(x) имеющее на отрезке a;b конечное число критических точек, нужно:1.

Найти критические точки, принадлежащие отрезкуa;b; 2.найти значения ф-ции в критических точках принадлежащих отрезку a;b;3. Найти значение ф-ции на концах отрезка;4. Из полученных чисел (значения ф-ции в критических точках и на концах промежутка ) выбрать наиболее наибольшее (наименьшее) .Пример: Найти наибольшее и наименьшее значение ф-ции y=x^3 –3x на отрезке -1,5;3. 1)D(y)=R; 2) найдем критические точки y’ =3x^2 –3; А)y’ = 0 если 3x^2