Hpor — страница 5

  • Просмотров 5500
  • Скачиваний 82
  • Размер файла 40
    Кб

решением уравнения cos x = a на промежудке [-Пи+2Пи; 2Пиn], где n принадлежит Z, являются числа вида x=-arccos a + 2 Пиn, где n принадлежит Z. Таким образом, все ершения уравнения могут быть записаны так: x=+-arccos a + 2Пиn, где n принадлежит Z. Билет № 7 1)Пусть на некотором промежутке задана функция y=f(x); x0-точка этого промежутка; x-приращение аргумента х; точка х0+x принадлежит этому промежутку; y-приращение функции. Предел отношения (если он

существует) приращения функции к приращению аргумента при стремлении приращения аргумента к нулю называется производной функции в точке. Пусть задана дифференцируемая функция y=f(x) (рис.36). Геометрический смысл производной состоит в том, что значение производной функции в точке x0 равно угловому коэффициенту касательной, проведённой к графику функции в точке с абсциссой x0: f’(x0)=R, где R-угловой коэффициент касательной. 2)1) На

промежутке (-Пи.2 ; Пи.2) функция y=tgx возрастает, значит, на этом промежутке, по теореме о корне, уравнение tgx=a имеет один корень, а именно, x=arctg a (рис 37). 2) Учитывая, что период тангенса равен Пиn, все решения определяются формулой x=arctg a + Пиn, nпринадлежит Z. Билет №8 1) Пусть ф-ция f(x) задана на некотором промежутке, а –точка этого промежутка. Если для ф-ции выполняется приближенное равенство f(x)f(a) с любой , наперед заданной точностью, для

всех х , близки х к а , то говорят , что ф-ция непрерывна в точке а. Иными словами ф-ция f непрерывна в точке а , если f(x)f(a) при ха. Ф-ция непрерывная в каждой точке промежутка наз-ся непрерывной на промежутке. Гр. непрерывной на промежутке ф-ции представляет собой непрерывную линию. Иными словами гр. можно нарисовать не отрывая карандаша от бумаги. Например ф-ция f(x)=3^x непрерывна в точке х0=2.Действаительно 3^x 3^2, при хФ-ция

f(x)=3^x непрерывна на множестве всех действительных чисел , а ее график можно нарисовать не отрывая карандаша от бумаги. 2) Арифметическим корнем n-ой степени из числа а наз-ся неотрицательное число n-ая степень к-рого равна а. Св-ва корней: Для любых натуральных n, целого k и любых неотрицательных чисел a и b выполняются следующие св-ва: N sqr ab= n sqr a * n sqr b n sqr (a/b)= (n sqr a)/( n sqr b) b 0 n sqr (k sqr a)= kn sqr (a), k> 0 n sqr (a) = kn sqr (a^k) ,k>0 n sqr (a^k)=( n sqr a)^k (ели kто

а Для любых неотрицательных чисел а и b таких, что а < b выполняется неравенство: n sqr a< n sqr b, если 0a<b Док-во св-ва №5: По опр-нию корня n-ой степени (n sqr a^k)^n=a^k; (n sqr a)^k0, так как n sqr a0. Найдем n-ю степень выражения (n sqr a)^k. По св-ву возведения степени в степень ((n sqr a)^k)^n=(n sqr a)^nk=(( n sqr a)^n)^k;по определению корня n-ой степени ((n sqr a)^n)^k=a^k. Следовательно n sqr a^k=( n sqr a)^k. Билет №9 1. Все рациональные и дробно-рациональные ф-ции непрерывны на