Hpor — страница 12

  • Просмотров 5591
  • Скачиваний 82
  • Размер файла 40
    Кб

а>1 1)D(f)=[0;+], если а не является натуральным числом. Это следует из определения степени с рациональным показателем. Если а натуральное число, то D(f)=(-;+) по определению степени с натуральным показателем. 2)E(f)=[0;+) для всех а>1, кроме а= 2R+1. Где RN. Это следует из определения степени с рациональным показателем. E(f)=(-;+) для нечётных а,т.е. а=2R+1, где RN. 3)Если а-чётное натуральное число, то данная функция является чётной. Т.к. f(-x)=(-x)^2R =

((-x)^2)^R= (x^2)^R = x^2R = f(x). Если а-нечётное натуральное число. то данная функция является нечётной, так как f(-x)=(-x)^2R+1 + (-x)^2R (-x)= x^2R * (-x)=-x^2R * x+ -x^2R+1 + -f(x). 4)При х=0 функция f(x)=0, так как 0^a = 0 при а>0. 5)При x>0 функция f(x)>0. Это следует из определения степени с рациональным показателем. При нечётных а(а=2R+1, RN), если х<0, функция принимает отрицательные значения. Так как x^2R+1+x^2R, x^2R>0, но x<0, следовательно, произведение x^2R x<0, т.е. f(x)<0 при x<0. 6)

Функция является возрастающей на промежутке [0;+) для любого a>1. Из свойства степени с рациональным показателем (r-рациональное число и 0<a<b, тогда a^r<b^r при r>0) следует, что x1^a<x2^a. Таким образом, меньшему значению аргумента соответствует меньшее значение функции, т.е. функция y=f(x) возрастает на промежутке [0;). Докажем, что если ф- нечётное число, то функция возрастает и на промежутке (-;0] (рис56б). Пусть x1<x2<0, тогда x1^a< x2^a по

определению степени с целым отрицательным показателем. Т.е. данная функция возрастает по определению возрастающей на промежутке функции. Аналогично можно доказать, что функция y=f(x) на промежутке (-;0] убывает, если а – чётное целое (рис56а). Билет №17 Пусть задана сложная ф-ция g(x)=f(kx+b). Если ф-ция f имеет производную в точке kx0+b, то производную ф-ции g можно найти по формуле g(x0)=kf(kx0+b). Например найдем производную ф-ции g(x)=(7x-9)^19

g(x)=7*19(7x-9)^18=133(7x-9)^18 2. Правило 1. Если F- первообразная ф-ции f, а G- первообразная ф-ции g, то F+G является первообразная ф-ции f+g. Док-во: Воспользуемся опр-ием первообразной , т.е. найдем производную ф-ции F+G. (F+G)=F+G=f+g Правило 2. Если F- первообразная ф-ции f, а k –постоянная , то kF- первообразная ф-ции kf. Док-во: Воспользуемся опр-ием первообразной , т.е. найдем производную ф-ции kF. (kF)=kF=kf Правило 3. Если y=F(x)- первообразная ф-ции y=f(x),а k и b-

постоянные, причем k0 то ф-ция y=1/k*f(kx+b) явл-ся первообразной ф-ции y=f(kx+b) Док-во: Воспользуемся опр-ием первообразной , т.е. найдем производную ф-ции y=1/k*F(kx+b) (1/k*F(kx+b))=1/k*F(kx+b)*k=F(kx+b)=f(kx+b) Билет № 18. 1.Пусть материальная точка движения по координатной прямой по закону x=x(t), т.е. координата точки – известная ф-ия времени. За промежуток времени t перемещение точки равно x, а средняя скорость vср=x/t. Если движение таково, что при t0