Химические взаимодействия во Вселенной — страница 6

  • Просмотров 297
  • Скачиваний 12
  • Размер файла 36
    Кб

являются пять, три из которых располагаются поодиночке на трех p-орбиталях. При перекрывании электронных облаков двух ато­мов азота образуются одна σ- и две π-связи. Это уже тройная связь. Она отличается необычайной прочностью, и становится понятным, почему молекулы азота N2 с таким трудом вступают в химические реакции. А вообше-то иметь несколько орбиталей с неспаренными электронами удобно — можно образовать несколько связей

с другими атомами. Вместо того чтобы использовать две связи на объединение друг с другом в молеку­ле О2 атом кислорода может присоединить к себе два атома водорода — получится молекула воды Н2О. Механизм возникновения химической связи, при котором используется по одному электрону от каж­дого атома, называют обменным. Здесь все атомы как бы обмениваются своими электронами. К примеру, если два человека обменяются яблоками, у

каждого опять бу­дет по одному яблоку, а если они обменяются идеями, у каждого их будет по две. А если один из них большой выдумщик и у него уже есть две идеи, а у его партнера ни одной? Что ж, во время общения результат окажется тем же — у каждого по две идеи, которые станут общими. Вот и пара электронов в области перекрывания может появиться и при пе­рекрывании двух орбиталей — пустой и имеющей два электрона. Это

донорно-акцепторный механизм образования химической связи: атом-до­нор безвозмездно отдает, а атом-акцептор принимает два спаренных элек­трона. У молекул воды или аммиака имеются атомные орбитали, не участвующие в образовании связи. Электроны, находящиеся на таких орбиталях, назы­вают неподеленными — наверное, потому, что атом еще не успел ими по­делиться. У него появляется такая возможность, если он присоединит к себе

частицу, имеющую свободную атомную орбиталь, например катион водорода Н+, вообще не имеющий электронов. При этом получается кати­он оксония Н3О+. Таким образом на основе электромаг­нитных взаимодействий объясняются не только электрические и магнитные явления, но и оптические, и тепловые, и химические. 4. Слабое взаимодействие Слабое взаимодействие, одно из фундаментальных взаимодействий, в котором участвуют все

элементарные частицы (кроме фотона). Слабое взаимодействие гораздо слабее не только сильного, но и электромагнитного взаимодействия, но неизмеримо сильнее гравитационного. Ожидаемый радиус действия слабого взаимодействия порядка 2·10-16 см. Слабое взаимодействие обусловливает большинство распадов элементарных частиц, взаимодействия нейтрино с веществом и др. Для слабого взаимодействия характерно нарушение четности,