Химические взаимодействия во Вселенной — страница 3

  • Просмотров 294
  • Скачиваний 12
  • Размер файла 36
    Кб

характеристикой «цвет».) В отличие от фотонов, глюоны взаимодействуют друг с другом, что приводит, в частности, к росту силы взаимодействия между кварками и глюонами при удалении их друг от друга. Предполагается, что именно это свойство определяет короткодействие ядерных сил и отсутствие в природе свободных кварков и глюонов. 3. Элек­тромагнитное взаимодействие Элек­тромагнитное взаимодействие, фундаментальное

взаимодействие, в котором участвуют частицы, имеющие электрический заряд (или магнитный момент). Переносчиком электромагнитного взаимодействия между заряженными частицами является электромагнитное поле, или кванты поля — фотоны. По «силе» электромагнитное взаимодействие занимает промежуточное положение между сильным и слабым взаимодействиями и является дальнодействующим. Оно определяет взаимодействие между ядрами и

электронами в атомах и молекулах, поэтому к электромагнитному взаимодействию сводится большинство сил, проявляющихся в макроскопических явлениях: силы упругости, трения, химическая связь и т. д. Электромагнитное взаимодействие приводит также к излучению электромагнитных волн, участвует в генерации света и других видов электромагнитного излучения. Оно связывает также атомы в молекулы, образуя все известные нам вещества. В

1647г., французский физик и философ Пьер Гассенди высказал предположение, что атомы первоначально соединяются в особые группы, которые он назвал молекулами (от лат. moles — «масса», с уменьшитель­ным суффиксом cula). Сразу же возник вопрос: как образуется связь между атомами в молеку­лах? Представления о том, что атомы сцепляются посредством крючков, со временем перестали удовлетворять химиков, т.к. стало ясно, что слож­ные

химические превращения невозможно объяснить примитивным ме­ханическим взаимодействием. В начале XIX в. шведский химик Йенс-Якоб Берцелиус предложил электрохимическую теорию сродства. Он считал, что атомы притягиваются друг к другу благодаря наличию у каждого из них двух противоположных электрических зарядов, находя­щихся на некотором расстоянии друг от друга. Идея о том, что силы, удерживающие атомы в молекуле, имеют

электрическую природу, оказалась верной, но первые шаги в понимании природы химической связи удалось сделать только после открытия электрона и разработки электронной теории строения атома. В 1907 г. российский химик Ни­колай Александрович Морозов предположил, что химическая связь между атомами может получиться за счет образования электронных пар. Это под­твердил в 1916 г. американский физикохимик Гилберт-Ньютон Льюис. По