Химические реакторы — страница 7

  • Просмотров 1027
  • Скачиваний 13
  • Размер файла 248
    Кб

затраты. Таким образом, энергетические, сырьевые и экологические факторы определяют экономическую целесообразность (а в некоторых областях техническую необходимость) перехода к совмещенной технологии. В совмещенных процессах в экструдер в его определенных точках вводят исходные реагенты и другие реакционноспособные агенты, которые гомогенизируются, реагируют друг с другом и образуют требуемые соединения. Реакционная

смесь продвигается вдоль шнека, и реакция протекает до желаемой степени конверсии, которая определяется временем пребывания в экструдере (см. рис. 3). Примеры типичных совмещенных процессов приведены в табл. 1. Было установлено, что следующие типы реакций могут быть проведены в экструдере: 1) радикальная, анионная, катионная и координационная полимеризация; 2) поликонденсация, полиприсоединение; 3) направленная деструкция и

сшивание полимеров с целью получения продукта с необходимым молекулярно-массовым распределением и образованием реакционных групп для последующей прививочной и других реакций; 4) образование функциональных групп на полимере; 5) модификация полимеров путем прививки мономеров или смеси мономеров на основную полимерную цепь с применением радикальных инициаторов или ионизирующего излучения; 6) межцепные реакции с получением

сополимеров; 7) реакции полимера и полифункциональных агентов с получением разветвленных полимеров; 8) получение термоэластопластов методом динамической вулканизации; 9) измельчение полимерных отходов, резин и пр. Одним из интенсивно развивающихся процессов реакционного смешения является процесс динамической вулканизации для получения термопластичных эластомеров (ТПЭ). В данном процессе при смешении термопластичных

полимеров (полиолефины, полиамид и др.) и эластомеров (тройной этилен-пропилен-диеновый сополимер, полиизопреновый каучук) происходят диспергирование эластомерной фазы до частиц размером 0, 1—5 мкм и одновременно реакция вулканизации, то есть сшивка линейных макромолекул каучука в трехмерную структуру резины. При этом получается материал, который состоит из однородно распределенного завулканизованного эластомера

(дисперсная фаза) и термопластичного полимера (матрица). Такие материалы обладают резиноподобными свойствами при комнатных температурах, а перерабатываются как термопластичные полимеры. Их производство и переработка являются экологически более чистыми процессами по сравнению с традиционной переработкой резин. Основной метод переработки резин в изделия — это прессование при высоких температурах в течение достаточно