Химическая и радиационная стойкость керамики — страница 8

  • Просмотров 712
  • Скачиваний 12
  • Размер файла 81
    Кб

соответствующие силикаты. Это связано с высокой долей ковалентности связи -Si-0-. Для аморфизации необходимо разрушить химические связи в кристалле. При относительно небольших мощностях потока в первую очередь будут разрываться более слабые химические связи (где тонко, там и рвется), т. е. в островных силикатах. В силикатах по сравнению с оксидами имеются связи —Si—0— и соответственно выше вероятность аккумулирования энергии в

виде точечных дефектов, вплоть до потери устойчивости кристаллической решетки и аморфизации. Керамические материалы в значительной мере многофазны. При воздействии облучения отдельные фазы ведут себя по-разному, при этом изменения в соединениях различны при их нахождении в керамике или в свободном состоянии. В многофазных материалах соответствующие фазы могут способствовать или препятствовать рассеиванию (или

аккумулированию) подводимой энергии. Увеличение мощности дозы (интенсивности потока излучения) заставляет систему искать оптимальное сочетание между рассеиванием и аккумулированием подводимой энергии. Диэлектрические материалы, обладающие в обычных условиях ничтожно малой электрической проводимостью, весьма чувствительны к воздействию радиации. Влияние проникающего излучения (γ-квантов, рентгеновского излучения,

электронов) на вещество определяется главным образом процессами взаимодействия между первичным квантом или электроном и электронами, находящимися в оболочках атомов облучаемого материала. В результате ионизации атомов и молекул в веществе образуются дополнительные электроны и положительные ионы. Во внешнем электрическом поле образованная пара зарядов участвует в процессах электрической проводимости, если составляющие

ее положительный ион и электрон не рекомбинируют друг с другом. Установлено, что ионизационная проводимость диэлектрических материалов связана с мощностью дозы излучения. Это связано с образованием электронных дефектов и переходом электронов из валентной зоны в зону проводимости. При увеличении энергии квантов и мощности потока появляются точечные дефекты - вакансии и междоузельные атомы. Нагревание в процессе облучения

способствует не только дополнительному подводу энергии к материалу, но и облегчает ее рассеивание за счет повышения подвижности атомов. При некоторых условиях наступает динамическое равновесие. Зависимость удельной проводимости корундовой керамики от температуры для необлученного (1) и облученного при дозе Р=10' р/с (2) образцов. При дальнейшем повышении температуры значение проводимости приближается к исходному. Изменение