Геометрия Лобачевского — страница 5

  • Просмотров 4054
  • Скачиваний 348
  • Размер файла 1569
    Кб

соответственно равны, а стороны неодинаковы, так что углы треугольника не позволяют вычислить длины всех его сторон (рис.12). Что это - желанное противоречие? Увы, опять нет! Наличие подобных, но неравных треугольников доказывается с помощью аксиомы о параллельных прямых. А потому сам факт, что такие треугольники существуют, может рассматриваться как ещё одна новая аксиома, эквивалентная пятому постулату. И Лобачевского осенила

гениальная догадка: противоречия никогда не будет! Иначе говоря, если мы добавляем ко всем прочим аксиомам ещё и пятый постулат, то получается непротиворечивая геометрическая система – та евклидова геометрия, к которой мы так привыкли. Если же ко всем прочим аксиомам вместо пятого постулата мы добавим отрицание аксиомы параллельности, т.е. аксиому о том, что через точку вне прямой можно провести более одной прямой,

параллельной данной, то получим другую геометрическую систему (Лобачевский назвал её «воображаемой» геометрией), которая, однако, тоже непротиворечива. В результате дальнейших исследований при помощи материала своей «воображаемой» геометрии Лобачевский построил модель геометрии Евклида. Какая злая ирония судьбы! Если бы всё было бы наоборот! Гениальный учёный понимал: создай он из материала евклидовой геометрии (в

непротиворечивости которой никто не сомневался) модель собственной «воображаемой» геометрии – и законность его геометрической системы установлена. Это сделали математики уже следующего поколения. Лобачевский выступил с докладом об открытии неевклидовой геометрии в1824 г. но поддержки не нашёл. Математики его времени ещё не были подготовлены к мысли о возможности существования иной, неевклидовой геометрии. Учёный умер, так и

не добившись признания своих идей. Впрочем, один человек понимал и поддерживал его работы. Гениальный Гаусс, «король математиков» (судя по архиву, разобранному уже после смерти), ещё в 1815 г., за девять лет до сообщения Лобачевского, размышлял над аналогичными идеями. И тем не менее Гаусс, к мнению которого прислушивались все, не решился опубликовать свои работы. Однако Гаусс добился того, что Лобачевского избрали иностранным

членом – корреспондентом Гёттингенского учёного общества. Это единственная почесть, возданная Лобачевскому при жизни. Кроме Гаусса был ещё один человек, который вместе с Лобачевским делит заслугу открытия неевклидовой геометрии. Венгерский математик Янош Больяй очень интересовался проблемой пятого постулата. Янош не послушал совета отца, который сказал, что эта проблема выше человеческих сил. И вскоре он добился успеха. Он