Геология и эволюция — страница 3

  • Просмотров 302
  • Скачиваний 23
  • Размер файла 17
    Кб

архейскими генами, особенно велика доля тех, которые связывают железо, железо-серные кластеры и молекулярный кислород, а также другие группы, участвующие в окислительно-восстановительных реакциях. Это может отражать расширение репертуара процессов дыхания и переноса электронов, причем гены, задействованные в кислородном дыхании, массово появляются лишь к концу архейского взрыва. Это согласуется с геологическими моделями

повышения содержания кислорода в атмосфере. Частое использование меди и молибдена в качестве кофакторов архейских генов также согласуется с геохимическими сведениями о появлении марганца в конкрециях и повышенной растворимости этих металлов при увеличении содержания кислорода в морской воде: только растворенные ионы металлов доступны для живых организмов. Ситуация с никелем также в общем согласуется с геохимическими

данными. А вот ситуация с железом оказалась противоречива: количество ферментов, кофактором которых является железо, растет, при том, что растворимость железа падает с увеличением содержания кислорода в воде, а в бескислородных глубоких водах железо осаждается в результате реакций с сульфидом. Одним из объяснений этого может быть эволюционная инерция, из-за которой прокариотам оказалось проще развить системы добывания

железа, такие как сидерофоры, вместо того, чтобы отказаться от железо-зависимых ферментов. Температура Еще один подход — реконструкция древних белков и изучение их свойств. Дело в том, что современные методы построения эволюционных деревьев не только восстанавливают историю, но и (с некоторой вероятностью) — предковые последовательности в каждом узле. Далее, методы генной инженерии позволяют воссоздать эту

последовательность в виде молекулы ДНК, вставить ее в живую бактерию и наработать соответствующий белок. А затем можно изучать его свойства, например, температурный оптимум — температуру, при которой фермент наиболее активен. Простые эволюционные соображения (подтвержденные многочисленными наблюдениями) показывают, что температурный оптимум совпадает с температурой, при которой (преимущественно) живет организм. Так что,

реконструировав древние белки и измерив их температурный оптимум, мы можем установить, при какой температуре жили предки современных организмов. Именно этот подход был применен в работе, выполненной в лаборатории Эрика Гоше. Поскольку амбиции авторов простирались очень далеко, они исследовали весьма консервативный белок, фактор трансляции EF-Tu. Авторы реконструировали белки в нескольких внутренних узлах, измерили