Genetic Engineering — страница 3

  • Просмотров 1740
  • Скачиваний 83
  • Размер файла 26

engineering may also pose risks that we simply do not know enough to identify. The recognition of this possibility does not by itself justify stopping the technology, but does put a substantial burden on those who wish to go forward to demonstrate benefits. Fundamental Weaknesses of the Concept Imprecise Technology—A genetic engineer moves genes from one organism to another. A gene can be cut precisely from the DNA of an organism, but the insertion into the DNA of the target organism is basically random. As a consequence, there is a risk that it may disrupt the functioning of other genes essential to the life of that organism. (Bergelson 1998) Side Effects—Genetic engineering is like performing heart surgery with a shovel. Scientists do not yet understand living systems

completely enough to perform DNA surgery without creating mutations which could be harmful to the environment and our health. They are experimenting with very delicate, yet powerful forces of nature, without full knowledge of the repercussions. (Washington Times 1997) Widespread Crop Failure—Genetic engineers intend to profit by patenting genetically engineered seeds. This means that, when a farmer plants genetically engineered seeds, all the seeds have identical genetic structure. As a result, if a fungus, a virus, or a pest develops which can attack this particular crop, there could be widespread crop failure. (Robinson 1996) Threatens Our Entire Food Supply—Insects, birds, and wind can carry genetically altered seeds into neighboring fields and beyond. Pollen from

transgenic plants can cross-pollinate with genetically natural crops and wild relatives. All crops, organic and non-organic, are vulnerable to contamination from cross-pollinatation. (Emberlin 1999) Health Hazards Here are the some examples of the potential adverse effects of genetically engineered organisms may have on human health. Most of these examples are associated with the growth and consumption of genetically engineered crops. Different risks would be associated with genetically engineered animals and, like the risks associated with plants, would depend largely on the new traits introduced into the organism. New Allergens in the Food Supply Transgenic crops could bring new allergens into foods that sensitive individuals would not know to avoid. An example is transferring

the gene for one of the many allergenic proteins found in milk into vegetables like carrots. Mothers who know to avoid giving their sensitive children milk would not know to avoid giving them transgenic carrots containing milk proteins. The problem is unique to genetic engineering because it alone can transfer proteins across species boundaries into completely unrelated organisms. Genetic engineering routinely moves proteins into the food supply from organisms that have never been consumed as foods. Some of those proteins could be food allergens, since virtually all known food allergens are proteins. Recent research substantiates concerns about genetic engineering rendering previously safe foods allergenic. A study by scientists at the University of Nebraska shows that soybeans

genetically engineered to contain Brazil-nut proteins cause reactions in individuals allergic to Brazil nuts. Scientists have limited ability to predict whether a particular protein will be a food allergen, if consumed by humans. The only sure way to determine whether protein will be an allergen is through experience. Thus importing proteins, particularly from nonfood sources, is a gamble with respect to their allergenicity. Antibiotic Resistance Genetic engineering often uses genes for antibiotic resistance as "selectable markers." Early in the engineering process, these markers help select cells that have taken up foreign genes. Although they have no further use, the genes continue to be expressed in plant tissues. Most genetically engineered plant foods carry fully

functioning antibiotic-resistance genes. The presence of antibiotic-resistance genes in foods could have two harmful effects. First, eating these foods could reduce the effectiveness of antibiotics to fight disease when these antibiotics are taken with meals. Antibiotic-resistance genes produce enzymes that can degrade antibiotics. If a tomato with an antibiotic-resistance gene is eaten at the same time as an antibiotic, it could destroy the antibiotic in the stomach. Second, the resistance genes could be transferred to human or animal pathogens, making them impervious to antibiotics. If transfer were to occur, it could aggravate the already serious health problem of antibiotic-resistant disease organisms. Although unmediated transfers of genetic material from plants to bacteria