Функциональные модели универсального нейрокомпьютера — страница 12

  • Просмотров 30757
  • Скачиваний 1016
  • Размер файла 1401
    Кб

поставленной задачи. Содержание девятой главы может служить типичным примером работы теоретического инженерного подхода. Другие примеры работ данного направления можно найти , например, в [8, 37, 107, 176, 222, 224, 230, 231, 256, 349, 365, 367]. Работы практического направления, как правило, содержат решение конкретной прикладной задачи. На нейросетевых и медицинских конференциях в последние годы докладываются сотни работ этого направления. В

Красноярске на базе нейросетевого эмулятора MultyNeuron [193, 194, 287] разработано свыше двух десятком различных медицинских экспертных систем [18, 49 – 52, 73, 93 – 96, 163, 164, 169, 201]. Число нейросетевых экспертных систем в различных областях насчитывает несколько тысяч. Примерами таких работ могут служить следующие работы [24, 121, 246, 249, 252, 253, 257 – 260, 272, 275, 284, 287, 292, 308, 310, 314, 315, 318, 331, 333 – 335, 337, 339, 342 – 344, 346, 350, 356, 359, 363, 366, 368, 377]. Несмотря на то, что обычно

большинство работ нельзя однозначно отнести к какому либо из перечисленных выше направлений, использование предложенной классификации работ позволяет яснее представить место работы в современной нейроинформатике. Автор относит свою работу к теоретическому поднаправлению инженерного направления. Методы нейроинформатики успешно зарекомендовали себя в настолько широком круге приложений, что стали темой многих публикаций

в изданиях, не имеющих прямого отношения к науке [99. 169]. Этот успех опирается на две предпосылки – универсальность нейронных сетей [38, 39, 57, 64, 70, 286] и способность вырабатывать нечто, напоминающее человеческую интуицию [101, 110, 254, 269, 270]. Безусловно, для большинства задач, решаемых методами нейроинформатики, существуют традиционные методы решения (см. например [4, 5, 17, 19, 89, 103, 109, 111, 113, 117 – 119, 128, 129, 271, 319, 360]). Более того, существует ряд

работ, посвященных решению классических задач методами нейроинформатики (см. например, [89, 129, 176, 222, 276, 277, 299, 320, 328, 349]). Однако, для применения большинства традиционных методов необходимо, во-первых, знать о них, во-вторых, знать их область их применения и ограничения. В то время, как успех нейроинформатики основан на утверждении «нейронные сети могут все». Это утверждение долгое время было лозунгом нейроинформатики, а сравнительно

недавно было строго доказано [38, 39, 57, 64, 70, 136, 266, 323]. Основные задачи и преимущества нейроинформатики подробно рассмотрены в [59 – 62, 71, 74, 108, 146, 151, 152, 170, 174, 245, 248, 262, 279, 281, 288, 290, 317] Многолетние усилия многих исследовательских групп привели к тому, что к настоящему моменту накоплено большое число различных правил обучения и архитектур нейронных сетей, способов оценивать и интерпретировать их работу, приемов использования нейронных