Функциональные модели универсального нейрокомпьютера — страница 10

  • Просмотров 30705
  • Скачиваний 1016
  • Размер файла 1401
    Кб

принципами. 2. Принцип построения эффективных функций оценки, позволяющих ускорить обучение нейронной сети, оценить уровень уверенности нейронной сети в полученном ответе, обучить с малой надежностью сеть решению тех задач, которые сеть данной архитектуры не может решить с высокой надежностью. 3. Метод получения явных знаний из данных с помощью логически прозрачных нейронных сетей, получаемых из произвольных обученных сетей

специальной процедурой контрастирования. 4. Метод построения минимально необходимых наборов входных данных и построения на их основе наборов входных данных повышенной устойчивости к искажениям во входных данных. Теоремы о соотношениях между различными видами таких наборов. 5. Метод описания процедуры конструирования нейронных сетей из простейших элементов и более простых сетей. Язык описания результатов конструирования. 6.

Методы повышения информационной емкости сетей ассоциативной памяти, функционирующих в дискретном времени. Метод конструирования сетей ассоциативной памяти со свойствами, необходимыми для решения конкретной задачи. Теорема об информационной емкости ортогональной тензорной сети. Публикации. По теме диссертации опубликовано более 40 работ, в том числе одна монография без соавторов, одна коллективная монография (сборник

лекций) и одно учебное пособие. Апробация работы. Основные положения и результаты работы докладывались на 1 Всероссийском рабочем семинаре «Нейроинформатика и нейрокомпьютеры», Красноярск (1993); 2, 3, 4, 5, 6, 7, 8 Всероссийских рабочих семинарах «Нейроинформатика и ее приложения», Красноярск (1994 – 2000); научно-технической конференции «Проблемы техники и технологий XXI века», Красноярск (1994); межрегиональной конференции «Проблемы

информатизации региона» (1995); 1, 2 IEEE-RNNS Symposium, Rostov-on-Don (1992, 1995); IEEE International Conference on Neural Networks, Houston, IEEE (1997); III Международной конференции "Математика, компьютер, образование". - Москва (1996); International Joint Conference on Neural Networks, Washington, DC, USA, 1999; 10th International. Congress of chemical engineering, chemical equipment design and automation, Praha (1990); Международном конгрессе «Индустриальная и прикладная математика», Новосибирск (1998). Кроме того, основные положения работы были представлены на

Всемирном конгрессе по нейронным сетям (WCNN'95) (1995).   Введение к диссертации Термин «Нейрокомпьютер» не имеет четкого определения, поэтому определим, что называется нейрокомпьютером в данной работе: нейрокомпьютер это устройство для решения какой либо задачи, в качестве основного решающего устройства использующее искусственную нейронную сеть. Для данной работы не важно в каком виде существует нейронная сеть и весь