Эволюция биологических механизмов запасания энергии — страница 8

  • Просмотров 4900
  • Скачиваний 494
  • Размер файла 1775
    Кб

вероятно, видимый свет. Рис. 3. Как первичная клетка могла избавиться от ионов НГ, образуемых гликолизом: а - облегчен­ная диффузия ионов Н+ посредством белка (фак­тора F0), образующего Непроводящий путь сквозь клеточную мембрану; б - комплекс факто­ров F0 и F, (Н+ - АТФаза) активно откачивает из клетки ионы Н+ за счет гидролиза АТФ. Мембран­ные липиды показаны горизонтальной штрихов­кой, белки не заштрихованы Другой сценарий эволюции

мог бы состоять в том, что возникновение фотосинтеза, использую­щего видимый свет, произошло еще до помутнения атмосферы, а именно при проникновении жизни в более глубокие уровни океана, лишенные ультра­фиолета. Замена опасного ультрафиолетового излу­чения на безопасный видимый свет могла бы быть тем признаком, который лег в основу естественного отбора на данном этапе эволюции. В рамках этой концепции создание озонового

слоя имеет биоген­ную природу, явившись результатом фотолиза воды системой хлорофилльного фотосинтеза зеленых бактерий и цианобактерий. Новый фотосинтез должен был, как и прежде, образовывать АТФ, который к тому времени уже прочно занял место в центре метаболической кар­ты, выполняя роль "конвертируемой энергетической валюты" клетки. Однако аденин уже не мог играть роль улавливающей свет антенны, так как его мак­симум

поглощения находится в ультрафиолетовой, а не в видимой области спектра. До нас дошли два типа фотосинтетических устройств, использующих видимый свет. В качестве антенны в одном из них служит хлорофилл, а в другом — производное вита­мина А, ретиналь, соединение с особым белком, названным бактериородопсином. Хлорофилл об­наружен у зеленых растений и почти у всех фотосинтезирующих бактерий. Исключение составляет одна группа

соле- и теплоустойчивых архебактерий, содержащих бактериородопсин. Тем не менее именно бактериородопсин выглядит как эволюционно первичный механизм запасания клеткой энергии видимого света. Бактериородопсин — светозависимый протон­ный насос. Он способен активно откачивать ионы Н+ из клетки за счет энергии видимого света, погло­щенного ретиналевой частью его молекулы. В ре­зультате световая энергия превращается в

трансмем­бранную разность электрохимических потенциалов ионов Н+ (сокращенно протонный потенциал, или ∆Н+). Для бактерий ∆Н+ - это свободная энергия ионов Н+, откачанных из клетки во внешнюю среду. Ионы Н+ как бы стремятся вернуться в клетку, где их стало меньше и где возник недостаток положи­тельных электрических зарядов из-за действия бактериородопсинового Н+ - насоса. Энергия света, за­пасенная таким образом в виде ∆Н-,