Эмпирические методы познания — страница 4

  • Просмотров 503
  • Скачиваний 16
  • Размер файла 19
    Кб

пойдет дальше. Приведем пример, когда опыт способствует открытию геометрического свойства и подсказывает путь его доказательства. Экспериментально обнаружить, что сумма углов данного треугольника равна 180°, можно сразу же, как только учащиеся научатся измерять углы с помощью транспортира. Учащимся предлагается измерить транспортиром углы начерченного в тетради треугольника и сложить результаты измерения. У некоторых сумма

углов треугольника получается меньше 180°, у других - больше, но у всех результаты близки к 180°, а у некоторых даже "точно" 180° (!). Ученики догадываются, что должно получиться 180°, а другие результаты объясняются погрешностями измерения. Они "совершают открытие": "Во всяком треугольнике сумма внутренних углов равна 180°". Это предположение подкрепляется вторым опытом, подсказывающим идею доказательства (одного из

возможных доказательств). У каждого школьника заготовлен вырезанный из бумаги треугольник. Учитель предлагает "оторвать" два угла и приложить их к третьему так, как он это делает сам на большом треугольнике. Учащиеся замечают, что получены три угла с общей вершиной А, расположенные по одну сторону от прямой. Следовательно, сумма этих углов равна 180°. С помощью этого опыта (уже без измерений) мы пришли к той же гипотезе, и всем

кажется, что обнаруженное свойство достоверно. Но можно ли быть уверенным в том, что два луча, сходящиеся в точке А, образуют прямую линию? Ведь они могут образовать ломаную, так мало отличающуюся от прямой, что мы этого не заметим. Но в этом случае сумма углов уже не будет равна 180°. Таким образом, проведенный опыт не заменяет доказательство. Он лишь подсказывает один из возможных путей доказательства открытого опытным путем

свойства. С помощью простого опыта формируется и наглядное представление о перемещении как об отображении плоскости на себя, сохраняющем расстояние между точками. На лист бумаги кладут тонкую прозрачную "o пластинку со многими отверстиями. С помощью карандаша отмечается на листе положение одного отверстия (одной точки). Пусть это точка А плоскости. Затем перемещают произвольно пластинку на листе и через это же отверстие

отмечается новая точка А При этом отмечается, что так можно поступить с любой точкой плоскости. Затем отмечают острием карандаша через два отверстия пластинки точки В и С плоскости и после некоторого перемещения пластинки через те же отверстия отмечают новые точки -В1 и С1 соответственно. Так как при перемещении пластинка не растягивается и не сжимается, то расстояния между точками сохраняются, т. е. |ВС| == | В1 С1 | Таким образом,