Эмпирические методы познания — страница 2

  • Просмотров 506
  • Скачиваний 16
  • Размер файла 19
    Кб

подлежащие обоснованию (или опровержению) уже иными методами. Наблюдение, опыт и измерения должны быть направлены на создание в процессе обучения специальных ситуаций и предоставление учащимся возможности извлечь из них очевидные закономерности, геометрические факты, идеи доказательства и т, д. Чаще всего результаты наблюдения, опыта и измерений служат посылками индуктивных выводов, с помощью которых осуществляются

открытия новых истин. Поэтому наблюдение, опыт и измерения относят и к эвристическим методам обучения, т. е. к методам, способствующим открытиям. Проиллюстрируем такое применение наблюдения, опыта и измерений несколькими примерами. Если показать учащимся IV-V классов различные фигуры, в том числе окружающие нас предметы, среди которых одни обладают, а другие не обладают осевой симметрией, то наблюдение этих фигур позволяет

заметить, что каждая из "симметричных" фигур делится некоторой прямой на две части так, что, если согнуть фигуру по этой прямой, одна ее часть полностью належится на другую. Для каждой же из "несимметричных" фигур такой прямой нельзя найти. После такого наблюдения "симметричных" фигур вокруг нас (архитектурных украшений, строительных и других деталей, некоторых листьев на деревьях и т. д.) можно перейти к

дальнейшему изучению осевой симметрии с помощью специального опыта (эксперимента). Каждому ученику предлагается согнуть лист бумаги так, чтобы одна часть листа упала на другую и образовалась линия сгиба. Затем предлагается выпрямить снова лист и отметить на нем произвольную точку А, не лежащую на линии сгиба, затем снова согнуть лист по той же линии сгиба и определить, глядя на свет через согнутый лист, с какой точкой совпала

при этом точка А. Пусть это точка А1 Учащимся сообщают, что точки А и А1 называются симметричными относительно прямой l (линии сгиба), называемой осью симметрии этих точек. Для другой точки В, лежащей по другую сторону от линии сгиба, чем точка А, предлагается определить (опытным путем, с помощью сгибания листа) симметричную ей точку относительно той же оси l. Замечаем, что, если взять точку С на линии сгиба, она остается неподвижной

при сгибании листа, т. е. не совпадает с какойлибо другой точкой листа. Мы говорим, что любая точка оси симметрии (линии сгиба) симметрична самой себе. Естественно возникает вопрос: чем. же характеризуется расположение относительно оси пары симметричных точек (А, А1, В, В1, как это можно описать с помощью уже известных геометрических терминов? Учащиеся замечают (возможно, с помощью учителя), что симметричные точки (если они различны)