Электрофизические и электрохимические методы обработки — страница 5

  • Просмотров 324
  • Скачиваний 10
  • Размер файла 97
    Кб

обработки электрической энергии значительно сокращает износ инструмента. Электроконтактные станки по кинематике не отличаются практически от соответствующих металлорежущих станков; имеют мощный источник тока. Магнитоимпульсная обработка применяется для пластического деформирования металлов и сплавов (обжатие и раздача труб, формовка трубчатых и листовых заготовок, калибровка и т. п.) и основана на непосредственном

преобразовании энергии меняющегося с большой скоростью магнитного поля, возбуждаемого, например, при разряде батареи мощных конденсаторов на индуктор, в механическую работу при взаимодействии с проводником (заготовкой) (рис. 7). Преимущества метода — отсутствие движущихся и трущихся частей в установках, высокая надёжность и производительность, лёгкость управления и компактность, наличие лишь одного инструмента — матрицы

или пуансона (роль другого выполняет поле) и др.: недостатки — относительно невысокий кпд, затруднительность обработки заготовок с отверстиями или пазами (мешающими протеканию тока) и большой толщины. Электрогидравлическая обработка (главным образом штамповка). Основана на использовании энергии гидравлического удара (См. Гидравлический удар) при мощном электрическом (искровом) разряде в жидком диэлектрике (рис. 8). При этом

необходимо вакуумирование полости между заготовкой и матрицей, поскольку из-за огромных скоростей движения заготовки к матрице воздух не успевает уйти из полости и препятствует плотному прилеганию заготовки к матрице. Метод прост, надёжен, но обладает небольшим кпд, требует высоких электрических напряжений и не всегда даёт воспроизводимые результаты. К электромеханической обработке относится также Ультразвуковая

обработка. Лучевая обработка. К лучевым методам обработки относится обработка материалов электронным пучком и световыми лучами (см. Лазерная технология). Электроннолучевая обработка осуществляется потоком электронов высоких энергий (до 100 кэв). Таким путём можно обрабатывать все известные материалы (современная Электронная оптика позволяет концентрировать электронный пучок на весьма малой площади, создавать в зоне

обработки огромные плотности мощности). Электроннолучевые станки могут выполнять резание (в т. ч. прошивание отверстий) и сварку с большой точностью (до 50 Å). Основой электроннолучевого станка является Электронная пушка. Станки имеют также устройства контроля режима обработки, перемещения заготовки, вакуумное оборудование. Из-за относительно высокой стоимости, малой производительности, технической сложности станки