Эконометрический метод и использование стохастических зависимостей в эконометрике — страница 3

  • Просмотров 493
  • Скачиваний 7
  • Размер файла 37
    Кб

P{wi} заключается в теоретическом, умозрительном анализе специфических условий данного конкретного случайного эксперимента (до проведения самого эксперимента). В ряде ситуаций этот предопытный анализ позволяет теоретически обосновать способ определения искомых вероятностей. Например, возможен случай, когда пространство всех возможных элементарных исходов состоит из конечного числа N элементов, причем условия производства

исследуемого случайного эксперимента таковы, что вероятности осуществления каждого из этих N элементарных исходов нам представляются равными (именно в такой ситуации мы находимся при подбрасывании симметричной монеты, бросании правильной игральной кости, случайном извлечении игральной карты из хорошо перемешанной колоды и т. п.). В силу аксиомы (1.1) вероятность каждого элементарного события равна в этом случае 1/N. Это

позволяет получить простой рецепт и для подсчета вероятности любого события: если событие А содержит NA элементарных событий, то в соответствии с определением (1.2) Р {А} = NA / N. (1.2') Смысл формулы (1.2’) состоит в том, что вероятность события в данном классе ситуаций может быть определена как отношение числа благоприятных исходов (т. е. элементарных исходов, входящих в это событие) к числу всех возможных исходов (так называемое

классическое определение вероятности). В современной трактовке формула (1.2’) не является определением вероятности: она применима лишь в том частном случае, когда все элементарные исходы равновероятны. Апостериорно-частотный подход к вычислению вероятностей Р {wi} отталкивается, по существу, от определения вероятности, принятого так называемой частотной концепцией вероятности. В соответствии с этой концепцией вероятность P {wi}

определяется как предел относительной частоты появления исхода wi в процессе неограниченного увеличения общего числа случайных экспериментов n, т.е. pi = P { wi} = lim mn (wi) / n (1.4) где mn (wi) – число случайных экспериментов (из общего числа n произведенных случайных экспериментов), в которых зарегистрировано появление элементарного события wi. Соответственно для практического (приближенного) определения вероятностей pi предлагается брать

относительные частоты появления события wi в достаточно длинном ряду случайных экспериментов. Разными в этих двух концепциях оказываются определения вероятностей: в соответствии с частотной концепцией вероятность не является объективным, существующим до опыта, свойством изучаемого явления, а появляется только в связи с проведением опыта или наблюдения; это приводит к смешению теоретических (истинных, обусловленных