Диссипативные структуры — страница 5
извне. Эти процессы описываются нелинейными уравнениями для макроскопических функций. Возникновение макроскопических структур обусловлено рождением, под действием крупномасштабных флуктуаций, коллективных типов движения (мод), их конкуренцией, подавлением одних и развитием тех, которые наиболее приспособляемы к данным условиям. Сходство процессов возникновения диссипативных структур с фазовыми переходами в равновесных системах дало основание называть их неравновесными (кинетическими) фазовыми переходами. Формальная общность кинетических и равновесных фазовых переходов заключается в кооперативном характере процесса, обусловленном тем, что в системе, обладающей бесконечным числом степеней свободы, находится одна или несколько таких, изменение которых подчиняет себе изменение остальных. Таким образом, в отличие от неравновесной статистической физики замкнутых систем, где анализируются процессы релаксации, приближение к равновесному состоянию, синергетика (термодинамика открытых систем) рассматривает обратный процесс создания и эволюции все усложняющихся диссипативных структур, когда системы стремятся к менее вероятному состоянию, эволюционируют с уменьшением энтропии. Так как в процессе усложнения требуется все большее число параметров для их описания, то структуры приобретают индивидуальность, неповторимость. В обратном процессе возвращения к положению термодинамического равновесия поведение различных систем становится схожим и, в конце концов, единственным параметром, определяющим функции распределения, становится температура. Диссипативные структуры можно разделить на временные, пространственные и пространственно-временные. Примерами временных структур являются периодические, колебательные и волновые процессы. Типичными примерами пространственных структур являются: переход ламинарного течения в турбулентное, переход диффузионного механизма передачи тепла в конвективный. Характерные примеры: турбулентность, ячейки Бенара и сверхрешетка пор. Развитие турбулентности начинается при достижении числом Рейнольдса критического значения. Ламинарное течение становится неустойчивым, возникают стационарные колебания скорости движения, затем более сложное движение до, все увеличивающимся числом характерных частот. Это чрезвычайно сложное квазипериодическое движение иногда называют динамическим хаосом. Однако понятие хаоса в этом случае не имеет ничего общего с хаотическим тепловым движением молекул в равновесном состоянии. Турбулентное движение является макроскопическим, обусловленным
Похожие работы
- Рефераты